已知函數(shù)f(x)=log2(-x2+ax+2a)在(1,2)上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,2]
B、[1,+∞)
C、(1,2]
D、[1,2]
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,函數(shù)t=-x2+ax+2a在(1,2)上是減函數(shù),且t>0,再根據(jù)二次函數(shù)的性質(zhì)求得a的范圍.
解答: 解:由題意可得,函數(shù)t=-x2+ax+2a在(1,2)上是減函數(shù),且t>0,
再根據(jù)函數(shù)t=-x2+ax+2a 的圖象的對稱軸為x=
a
2
,可得
a
2
≤1
-4+2a+2a≥0
,
求得 1≤a≤2,
故選:D.
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3 x2-2x+2,x∈[-1,2]的值域是(  )
A、R
B、[3,243]
C、[9,243]
D、[3,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2x上的點(diǎn)P到拋物線的準(zhǔn)線的距離為d1,到直線3x-4y+9=0的距離為d2,則d1+d2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2x≥x2},B={-2,0,2},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,x2+x+1≥0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i為虛數(shù)單位,則復(fù)數(shù)z=
2i3
1+i
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan(-300°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(10分)已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R),若函數(shù)f(x)在x=-1時(shí)取到最小值0,且f(0)=1,g(x)=
f(x)(x>0)
-f(x)(x<0)

(1)求g(2)+g(-2)的值;
(2)求f(x)在區(qū)間[t,t+2](t∈R)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷,正確的是(  )
A、平行于同一平面的兩直線平行
B、垂直于同一直線的兩直線平行
C、垂直于同一平面的兩平面平行
D、垂直于同一平面的兩直線平行

查看答案和解析>>

同步練習(xí)冊答案