已知向量
a
=(1,2),
b
=(x+1,-x),且
a
b
,則x=( 。
A、1
B、2
C、
2
3
D、0
分析:本題考查知識(shí)點(diǎn)是兩個(gè)平面向量的垂直關(guān)系,由
a
b
,且
a
=(1,2),
b
=(x+1,-x),我們結(jié)合“兩個(gè)向量若垂直,對(duì)應(yīng)相乘和為0”的原則,易得到一個(gè)關(guān)于x的方程,解方程即可得到答案.
解答:解:∵
a
b
,
a
b
=0,
即x+1-2x=0,
x=1.
故答案選A.
點(diǎn)評(píng):判斷兩個(gè)向量的關(guān)系(平行或垂直)或是已知兩個(gè)向量的關(guān)系求未知參數(shù)的值,要熟練掌握向量平行(共線)及垂直的坐標(biāo)運(yùn)算法則,即“兩個(gè)向量若平行,交叉相乘差為0,兩個(gè)向量若垂直,對(duì)應(yīng)相乘和為0”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知向量
a
=(-1,2),又點(diǎn)A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤
π
2
)

(1)若
AB
a
,且|
AB
|=
5
|
OA
|(O
為坐標(biāo)原點(diǎn)),求向量
OB
;
(2)若向量
AC
與向量
a
共線,當(dāng)k>4,且tsinθ取最大值4時(shí),求
OA
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(2,x)如果
a
b
所成的角為銳角,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(x,-2)且
a
b
,則實(shí)數(shù)x等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=tan(3x-
π
2
)
的最小正周期是
π
3

②角α終邊上一點(diǎn)P(-3a,4a),且a≠0,那么cosα=-
3
5

③函數(shù)y=cos(2x-
π
3
)
的圖象的一個(gè)對(duì)稱中心是(-
π
12
,0)

④已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ為實(shí)數(shù),且(
a
b
)∥
c
,則λ=2
⑤設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x2-x,則f(1)=-3
其中正確的個(gè)數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(x,4),若|
b
|=2|
a
|,則x的值為
±2
±2

查看答案和解析>>

同步練習(xí)冊(cè)答案