已知函數(shù)
(1)若在上單調(diào)遞增,求的取值范圍;
(2)若定義在區(qū)間D上的函數(shù)對于區(qū)間上的任意兩個(gè)值總有以下不等式成立,則稱函數(shù)為區(qū)間上的 “凹函數(shù)”.試證當(dāng)時(shí),為“凹函數(shù)”.
(1)(2)理解凹函數(shù)的定義 ,然后結(jié)合中點(diǎn)函數(shù)值與任意兩點(diǎn)的函數(shù)值和的關(guān)系式作差法加以證明。
【解析】
試題分析:解(1)由,得
函數(shù)為上單調(diào)函數(shù). 若函數(shù)為上單調(diào)增函數(shù),則在上恒成立,即不等式在上恒成立. 也即在上恒成立.
令,上述問題等價(jià)于,而為在上的減函數(shù),則,于是為所求.
(2)證明:由得
而 ①
又, ∴ ②
∵ ∴,
∵ ∴ ③
由①、②、③得
即,從而由凹函數(shù)的定義可知函數(shù)為凹函數(shù)
考點(diǎn):新定義和函數(shù)性質(zhì)的運(yùn)用
點(diǎn)評:結(jié)合均值不等式的思想,以及函數(shù)的解析式來求解,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
(1)若在上為單調(diào)減函數(shù),求實(shí)數(shù)取值范圍;
(2)若求在[-3,0]上的最大值和最小值。查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知函數(shù)(1)若在處取得極值,求函數(shù)的單調(diào)區(qū)間。(2)若存在時(shí),使得不等式成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市薊縣高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
【題文】已知函數(shù).
(1)若在處取得極大值,求實(shí)數(shù)的值;
(2)若,求在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)若在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若是的極值點(diǎn),求在上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年湖南省高三第一次學(xué)情摸底考試數(shù)學(xué)卷 題型:解答題
(本題滿分13 分)
已知函數(shù)
(1)若在的圖象上橫坐標(biāo)為的點(diǎn)處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內(nèi)有兩個(gè)不同的極值點(diǎn),求a 取值范圍;
(3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)的圖象與函數(shù)的圖象恰有三個(gè)交點(diǎn),若存在,試出實(shí)數(shù)m 的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com