A1B1滿足A1UB1A,則稱(A1,B1)為集合A的一種分拆并規(guī)定:當(dāng)且僅當(dāng)A1B1時,(A1B1)(B1,A1)為集合A的一種分拆求集合A{a1,a2a3}的不同分拆的種數(shù)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx+m,當(dāng)x∈[a1,b1]時,f(x)的值域為[a2,b2],當(dāng)x∈[a2,b2]時,f(x)的值域為[a3,b3],…,依此類推,一般地,當(dāng)x∈[an-1,bn-1]時,f(x)的值域為[an,bn],其中k、m為常數(shù),且a1=0,b1=1.
(1)若k=1,求數(shù)列{an},{bn}的通項公式;
(2)若m=2,問是否存在常數(shù)k>0,使得數(shù)列{bn}滿足
limn→∞
bn=4
.若存在,求k的值;若不存在,請說明理由;
(3)若k<0,設(shè)數(shù)列{an},{bn}的前n項和分別為Sn,Tn,求(T1+T2+…+T2010)-(S1+S2+…+S2010).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足,an+1=
an(
a
2
n
+3)
3
a
2
n
+1

(1)若方程f(x)=x的解稱為函數(shù)y=f(x)的不動點,求an+1=f(an)的不動點的值;
(2)若a1=2,bn=
an-1
an+1
,求證:數(shù)列{lnbn}是等比數(shù)列,并求數(shù)列{bn}的通項.
(3)當(dāng)任意n∈N*時,求證:b1+b2+b3+…+bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn},且滿足an+1-an=bn(n=1,2,3,…).
(1)若a1=0,bn=2n,求數(shù)列{an}的通項公式;
(2)若bn+1+bn-1=bn(n≥2),且b1=1,b2=2.記cn=a6n-1(n≥1),求證:數(shù)列{cn}為常數(shù)列;
(3)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.若數(shù)列{
ann
}中必有某數(shù)重復(fù)出現(xiàn)無數(shù)次,求首項a1應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

A1、B1滿足A1UB1A,則稱(A1B1)為集合A的一種分拆并規(guī)定:當(dāng)且僅當(dāng)A1B1時,(A1,B1)(B1,A1)為集合A的一種分拆求集合A{a1a2,a3}的不同分拆的種數(shù)

 

查看答案和解析>>

同步練習(xí)冊答案