精英家教網 > 高中數學 > 題目詳情
正方體ABCD-A1B1C1D1的棱長為1,點M在AB上,且AM=,點P是平面ABCD上的動點,且動點P到直線A1D1的距離與動點P到點M的距離的平方差為1,則動點的軌跡是( )
A.圓
B.拋物線
C.雙曲線
D.直線
【答案】分析:作PQ⊥AD,作QR⊥D1A1,PR即為點P到直線A1D1的距離,由勾股定理得 PR2-PQ2=RQ2=1,又已知PR2-PM2=1,PM=PQ,即P到點M的距離等于P到AD的距離.
解答:解:如圖所示:正方體ABCD-A1B1C1D1  中,作PQ⊥AD,Q為垂足,則PQ⊥面ADD1A1,過點Q作QR⊥D1A1
則D1A1⊥面PQR,PR即為點P到直線A1D1的距離,由題意可得 PR2-PQ2=RQ2=1.
又已知 PR2-PM2=1,∴PM=PQ,即P到點M的距離等于P到AD的距離,根據拋物線的定義可得,點P的軌跡是拋物線,
故選 B.
點評:本題考查拋物線的定義,求點的軌跡方程的方法,體現(xiàn)了數形結合的數學思想,得到PM=PQ是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內;(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
(1)求A1H與平面EFH所成角的正弦值;
(2)設點P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值( 。

查看答案和解析>>

同步練習冊答案