函數(shù)f(x)=x+
4x
(x>0)的最小值為
 
分析:利用基本不等式,即可求最值.
解答:解:∵x>0,
∴f(x)=x+
4
x
2
x•
4
x
=4,
當(dāng)且僅當(dāng)x=
4
x
,即x=2時(shí),函數(shù)f(x)=x+
4
x
(x>0)的最小值為4.
故答案為:4
點(diǎn)評:本題考查基本不等式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-2
+(x-4)0
的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各對函數(shù)表示同一函數(shù)的是(  )
(1)f(x)=x與g(x)=(
x
2                     
(2)f(x)=x-2與g(x)=
x2-4x+4

(3)f(x)=πx2(x≥0)與g(r)=πr2(r≥0)
(4)f(x)=|x|與g(x)=
x,x≥0
-x,x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+5,若曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為3,且當(dāng)x=
23
時(shí),y=f(x)有極值.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列表格,探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)
的性質(zhì),
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.
當(dāng)x=
2
2
時(shí),y最小=
4
4

(2)證明:函數(shù)f(x)=x+
4
x
在區(qū)間(0,2)遞減.
(3)函數(shù)f(x)=x+
4
x
(x<0)
時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

同步練習(xí)冊答案