如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F(xiàn)分別為邊AD和BC上的點(diǎn),且EF∥AB,AD=2AE=2AB=4FC=4.將四邊形EFCD沿EF折起成如圖2的位置,使AD=AE.

(1)求證:BC∥平面DAE;

(2)求四棱錐D-AEFB的體積;

(3)求面CBD與面DAE所成銳二面角的余弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F(xiàn)分別為邊AD和BC上的點(diǎn),且EF∥AB,AD=2AE=2AB=4FC=4.將四邊形EFCD沿EF折起成如圖2的位置,使AD=AE.
(Ⅰ)求證:BC∥平面DAE;
(Ⅱ)求四棱錐D-AEFB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•寧波模擬)如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F(xiàn)分別為邊AD和BC上的點(diǎn),且EF∥AB,AD=2AE=2AB=4FC=4,將四邊形EFCD沿EF折起如圖2的位置,使AD=AE.
(I)求證:BC∥平面DAE;
(II)求四棱錐D-AEFB的體積;
(III)求面CBD與面DAE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省五校協(xié)作體高三上學(xué)期期初聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

如圖(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別是PC、PD、BC的中點(diǎn),現(xiàn)將△PDC沿CD折起,使平面PDC⊥平面ABCD(如圖2)

(1)求二面角G-EF-D的大。

(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明過(guò)程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省寧波市十校高三聯(lián)考數(shù)學(xué)理卷 題型:解答題

.如圖1,直角梯形ABCD中,, E,F(xiàn)分別為邊AD和BC上的點(diǎn),且EF//AB,AD=2AE=2AB=4FC=4將四邊形EFCD沿EF折起(如圖2),使AD=AE.

   (Ⅰ)求證:BC//平面DAE;

   (Ⅱ)求四棱錐D—AEFB的體積;

   (Ⅲ)求面CBD與面DAE所成銳二面角的余弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F(xiàn)分別為邊AD和BC上的點(diǎn),且EF∥AB,AD=2AE=2AB=4FC=4.將四邊形EFCD沿EF折起成如圖2的位置,使AD=AE.
(Ⅰ)求證:BC∥平面DAE;
(Ⅱ)求四棱錐D-AEFB的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案