如圖所示的幾何體中,平面,的中點。

(Ⅰ)求證:;

(Ⅱ)設二面角的平面角為,求 。

(Ⅰ)證明見解析。

(Ⅱ)


解析:

解法一:分別以直線軸、軸、軸,建立如圖所示的空間直角坐標系,設,則

所以。

(Ⅰ): 

,即

(Ⅱ)解:設平面的法向量為, 

,

得平面的一非零法向量為 ,

又平面BDA的一個法向量為,

,

解法二:

(Ⅰ)證明:如圖所示,取的中點,連接,則,

四點共面,

平面,  

。

,

,

,

平面,

。

(Ⅱ)取的中點,連,則平面

,連,則,

是二面角的平面角。

, 的交點為,記,,則有

,

。

。

,

,在中,

。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,平面ACE⊥平面ABCD,四邊形ABCD為平行四邊形,∠ACB=90°,EF∥BC,AC=BC=
2
,AE=EC=1.
(Ⅰ)求證:AE⊥平面BCEF;
(Ⅱ)求三棱錐D-ACF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•朝陽區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中點.
(Ⅰ)求證:EM∥平面ADF;
(Ⅱ)在EB上是否存在一點P,使得∠CPD最大?若存在,請求出∠CPD的正切值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•吉安二模)如圖所示的幾何體中,底面ABCD是矩形,AB=9,BC=6,EF∥平面ABCD,EF=3,△ADE和△BCF
都是正三角形,則幾何體EFABCD的體積為
63
2
63
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•西城區(qū)一模)在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AC=
3
,AB=2BC=2,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)求四面體FBCD的體積;
(Ⅲ)線段AC上是否存在點M,使EA∥平面FDM?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的幾何體中,AE⊥平面ABC,CD∥AE,F(xiàn)是BE的中點,AC=BC=1,∠ACB=90°,AE=2CD=2.
(1)證明:DF⊥平面ABE;
(2)求二面角A-BD-F大小的余弦值.

查看答案和解析>>

同步練習冊答案