5.命題p:f(x)=ax-sin2x在R上單調(diào)遞增;命題q:g(x)=x3-3x2+a只有唯一的零點.若命題p和命題q中有且只有一個為真,求a的范圍.

分析 先分別求出命題p、q為真時a的取值范圍,由命題p和命題q中有且只有一個為真列式計算即可.

解答 解:p真,f′(x)=a-2cosx≥0恒成立,則a≥2;…(3分)
q真,則g(x)滿足極大值為負(fù)或極小值為正,又g′(x)=3x2-6x=0,得x=0或x=2
∴極大值g(0)=a<0,極小值g(2)=a-4>0,即a<0或a>4,…(7分)
∴當(dāng)p真q假時:2≤a≤4,當(dāng)p假q真時:a<0,
故a的范圍是:a<0或2≤a≤4…(12分)

點評 本題考查了命題真假的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)過點M(m,0)(m>0)任作一條直線與曲線C交于A,B兩點,點N(n,0),連接AN,BN,且m+n=0.求證:∠ANM=∠BNM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)命題p:x≤$\frac{1}{2}$或x≥1,命題q:(x-a)(x-a-1)≤0,若p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在區(qū)間[0,1]中隨機取出兩個數(shù),則兩數(shù)之和不小于$\frac{4}{5}$的概率是( 。
A.$\frac{8}{25}$B.$\frac{9}{25}$C.$\frac{18}{25}$D.$\frac{17}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx+k(x-1)2,k∈R與函數(shù)g(x)=x-1
(1)當(dāng)k=$\frac{1}{2}$,x∈(1,+∞)時,求證:f(x)>g(x)恒成立
(2)當(dāng)f(x)>g(x)在x∈(1,+∞)上恒成立時,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.①“?x∈R,x2-3x+3=0”的否定是真命題;
②“$-\frac{1}{2}<x<0$”是“2x2-5x-3<0”必要不充分條件;
③“若xy=0,則x,y中至少有一個為0”的否命題是真命題;
④曲線$\frac{x^2}{25}+\frac{y^2}{9}=1$與曲線$\frac{x^2}{25-k}+\frac{y^2}{9-k}=1(9<k<25)$有相同的焦點;
⑤過點(1,3)且與拋物線y2=4x相切的直線有且只有一條.
其中是真命題的有:①③④(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=(x-a)•(x-b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=logax+b的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z=lgm+(lgn)i,其中i是虛數(shù)單位.若復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在直線y=-x上,則mn的值等于( 。
A.0B.1C.10D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.點M的直角坐標(biāo)是(1,-$\sqrt{3}$),則點M的極坐標(biāo)為( 。
A.(2,$\frac{π}{3}$)B.(2,-$\frac{π}{3}$)C.(2,$\frac{2π}{3}$)D.(2,2kπ+$\frac{π}{3}$)(k∈Z)

查看答案和解析>>

同步練習(xí)冊答案