18.曲線y=$\frac{1}{x}$在點(diǎn)(a,$\frac{1}{a}$)處的切線與兩個(gè)坐標(biāo)圍成的三角形的面積為(  )
A.2B.4C.6D.和a的取值有關(guān)

分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,可得切線的方程,求得x,y軸的截距,運(yùn)用三角形的面積公式,計(jì)算即可得到所求值.

解答 解:由題意,y=$\frac{1}{x}$的導(dǎo)數(shù)為y′=-$\frac{1}{{x}^{2}}$,
可得在點(diǎn)(a,$\frac{1}{a}$)處的切線斜率為-$\frac{1}{{a}^{2}}$,
即有切線的方程為y-$\frac{1}{a}$=-$\frac{1}{{a}^{2}}$(x-a).
令x=0,可得y軸上的截距為$\frac{2}{a}$;
y=0可得x軸上的截距為2a.
即有圍成的三角形的面積為$\frac{1}{2}$×2a×$\frac{2}{a}$=2.
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,以及直線方程的運(yùn)用,正確求導(dǎo)是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),若(2$\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$,則x=( 。
A.-1B.1或-3C.3D.-1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出命題:p:$\sqrt{2}$>1,q:y=tanx是偶函數(shù),則有三個(gè)命題:“p且q”、“p或q”、“非p”中真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)銳角△ABC的外接圓為圓Γ,過點(diǎn)B,C作圓Γ的兩條切線交于點(diǎn)P,鏈接AP與BC交于點(diǎn)D,點(diǎn)E,F(xiàn)分別在邊AC,AB上,使得DE∥BA,DF∥CA.證明:F,B,C,E四點(diǎn)共圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知CD是△ABC的高,DE⊥CA,DF⊥CB,求證:△CEF∽△CBA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.5個(gè)人排成一排,其中甲在中間的排法種數(shù)有(  )
A.5B.120C.24D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某小區(qū)現(xiàn)有一塊草坪ABCD呈平行四邊形形狀,AB=3,AD=2,∠BAD=60°,為了改善居民的生活環(huán)境,決定將原草坪擴(kuò)建成三角形PAQ形狀,點(diǎn)A,D,P共線,Q,C,P共線,A,B,Q共線,設(shè)AP=x,BQ=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)求△APQ面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,E為AC與BD的交點(diǎn),PA⊥平面ABCD,M為PA中點(diǎn),N為BC中點(diǎn).
(1)證明:直線MN∥平面PCD;
(2)若點(diǎn)Q為PC中點(diǎn),∠BAD=120°,PA=$\sqrt{3}$,AB=1,求三棱錐A-QCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者,若f(a+2)>f(a),則實(shí)數(shù)a的取值范圍為(-∞,-2)∪(-1,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案