如圖,已知⊙中,直徑垂直于弦,垂足為,延長(zhǎng)線上一點(diǎn),切⊙于點(diǎn),連接于點(diǎn),證明:

【解析】本試題主要考查了直線與圓的位置關(guān)系的運(yùn)用。要證明角相等,一般運(yùn)用相似三角形來(lái)得到,或者借助于弦切角定理等等。根據(jù)為⊙的切線,∴為弦切角

連接   ∴…注意到是直徑且垂直弦,所以 且…利用,可以證明。

解:∵為⊙的切線,∴為弦切角

連接   ∴……………………4分

又∵  是直徑且垂直弦  ∴   且……………………8分

    ∴

 

【答案】

見(jiàn)解析

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
如圖,已知⊙O中,直徑AB垂直于弦CD,垂足為M,P是CD延長(zhǎng)線上一點(diǎn),PE切⊙O于點(diǎn)E,連接BE交CD于點(diǎn)F,證明:
(1)∠BFM=∠PEF;
(2)PF2=PD•PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
如圖,已知△ABC中,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,過(guò)D作DE⊥BC,垂足為E,連接OE.若CD=
3
,∠ACB=30°
,分別求AB,OE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省“晉商四校”2011-2012學(xué)年高二下學(xué)期聯(lián)考數(shù)學(xué)文科試題 題型:047

如圖,已知⊙O中,直徑AB垂直于弦CD,垂足為M,P是CD延長(zhǎng)線上一點(diǎn),PE切⊙O于點(diǎn)E,連接BE交CD于點(diǎn)F,證明:∠BFM=∠PEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年內(nèi)蒙古巴彥淖爾市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知⊙O中,直徑垂直于弦,垂足為,延長(zhǎng)線上一點(diǎn),切⊙O于點(diǎn),連接于點(diǎn),證明:

(1) ;

(2) .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省模擬題 題型:證明題

如圖,已知⊙O中,直徑AB垂直于弦CD,垂足為M,P是CD延長(zhǎng)線上一點(diǎn),PE切⊙O于點(diǎn)E,連接BE交CD于點(diǎn)F,
證明:(Ⅰ)∠BFM=∠PEF;
(Ⅱ)PF2= PD·PC。

查看答案和解析>>

同步練習(xí)冊(cè)答案