設(shè)M={正四棱柱},N={直四棱柱},P={長方體},Q={直平行六面體},則四個集合的關(guān)系為( )
A.M?P?N?Q
B.M?P?Q?N
C.P?M?N?Q
D.P?M?Q?N
【答案】分析:明確正四棱柱、直四棱柱、長方體、直平行六面體間的概念的內(nèi)涵,四個定義中底面的形狀的要求,側(cè)棱和底面的關(guān)系,容易得到答案.
解答:解:M={正四棱柱};底面是正方形的直棱柱;
N={直四棱柱}:是側(cè)棱與底面垂直的四棱柱,底面是四邊形即可;
P={長方體}:底面是矩形側(cè)棱垂直底面的四棱柱;
Q={直平行六面體}:是側(cè)棱垂直底面的四棱柱;
故選B.
點評:本題考查棱柱的結(jié)構(gòu)特征,對概念的理解,概念間的關(guān)系,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M、N分別在AD1,BC上移動,并始終保持MN∥平面DCC1D1,設(shè)BN=x,MN=y,則函數(shù)y=f(x)的圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng) 如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,點N是BC的中點,點M在CC1上.設(shè)二面角A1-DN-M的大小為θ,
(1)當(dāng)θ=90°時,求AM的長;
(2)當(dāng)cosθ=
6
6
時,求CM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、設(shè)集合M={正四棱柱},N={正方體},P={直四棱柱},Q={直平行六面體},則M、N、P、Q的包含關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M={正四棱柱},N={長方體},P={直四棱柱},Q={正方體},則這四個集合的關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:遼寧省大連市二十三中學(xué)2010-2011學(xué)年高二第一次月考數(shù)學(xué)試題 題型:013

設(shè)M={正四棱柱},N={長方體},P={直四棱柱},Q={正方體},則這些集合之間關(guān)系

[  ]
A.

PNMQ

B.

QMNP

C.

PMNQ

D.

QNMP

查看答案和解析>>

同步練習(xí)冊答案