橢圓的兩個焦點是F1(-1, 0), F2(1, 0),P為橢圓上一點,且|F1F2|是|PF1|與|PF2|的等差中項,則該橢圓方程是(   )
A.B.
C.D.
B

試題分析:由題意可得:|PF1|+|PF2|=2|F1F2|=4,而結合橢圓的定義可知,|PF1|+|PF2|=2a,
∴2a=4,2c=2,由a2=b2+c2,∴b=3
∴橢圓的方程為,選B.
點評:解決該試題的關鍵是根據(jù)已知的等差中項的性質(zhì)得到a,,bc,關系式,結合a2=b2+c2,求解得到其方程。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

點P是圓上的一個動點,過點P作PD垂直于軸,垂足為D,Q為線段PD的中點。
(1)求點Q的軌跡方程。
(2)已知點M(1,1)為上述所求方程的圖形內(nèi)一點,過點M作弦AB,若點M恰為弦AB的中點,求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線兩條漸近線互相垂直,那么它的離心率為 (    )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的準線方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

方程表示的曲線為,給出下列四個命題:
①曲線不可能是圓;  ②若,則曲線為橢圓;③若曲線為雙曲線,則;④若曲線表示焦點在x軸上的橢圓,則.
其中正確的命題是__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為雙曲線的左、右焦點.
(Ⅰ)若點為雙曲線與圓的一個交點,且滿足,求此雙曲線的離心率;
(Ⅱ)設雙曲線的漸近線方程為,到漸近線的距離是,過的直線交雙曲線于A,B兩點,且以AB為直徑的圓與軸相切,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)已知拋物線的頂點是雙曲線的中心,而焦點是雙曲線的頂點,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是雙曲線C:的左焦點,是雙曲線的虛軸,的中點,過的直線交雙曲線C于,且,則雙曲線C離心率是____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率是(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案