4.計算:($\frac{1}{2}$)-1+($\frac{1}{4}$)0-9${\;}^{\frac{1}{2}}$=0.

分析 利用指數(shù)性質、運算法則求解.

解答 解:($\frac{1}{2}$)-1+($\frac{1}{4}$)0-9${\;}^{\frac{1}{2}}$
=2+1-3
=0.
故答案為:0.

點評 本題考查指數(shù)式化簡求值,是基礎題,解題時要認真審題,注意指數(shù)性質、運算法則的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.若復數(shù)z=$\frac{1+i}{1-i}$+m(1-i)(i為虛數(shù)單位)為純虛數(shù),則實數(shù)m的為( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.過點(2,4)作函數(shù)y=x3-2x的切線,則切線方程是y=10x-16或y=x+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,平面α截三棱錐P-ABC得截面DEFG,設PA∥α,BC∥α.
(1)求證:四邊形DEFG為平行四邊形;
(2)設PA=6,BC=4,PA與BC所成的角為600,求四邊形DEFG面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某影院有50排座位,每排有60個座號,一次報告會坐滿了聽眾,會后留下座號為18的所有聽眾50人進行座談,這是運用了( 。
A.抽簽法B.隨機數(shù)表法C.系統(tǒng)抽樣D.放回抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某初級中學有學生270人,其中一年級108人,二、三年級各81人,現(xiàn)要利用抽樣方法抽取10人參加某項調查,考慮選用簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機抽樣和分層抽樣時,將學生按一、二、三年級依次統(tǒng)一編號為1,2,…,270;使用系統(tǒng)抽樣時,將學生統(tǒng)一隨機編號為1,2,…,270,并將整個編號依次分為10段.如果抽得號碼有下列四種情況:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④27,54,81,128,135,162,189,216,243,270;
關于上述樣本的下列結論中,可能為系統(tǒng)抽樣的是①③;可能為分層抽樣的是①②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.若非零函數(shù)f(x)對任意實數(shù)a,b,均有f(a+b)=f(a)•f(b),且當x<0時,f(x)>1;
(1)求f(0)的值;
(2)求證:①任意x∈R,f(x)>0;  ②f(x)為減函數(shù);
(3)當f(1)=$\frac{1}{2}$時,解不等式f(x2+x-3)•f(5-x2)≤$\frac{1}{4}$;
(4)若f(1)=$\frac{1}{2}$,求f(x)在[-4,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,內角A、B、C的對邊長分別為a、b、c,已知a2-c2=3b,且sinAcosC=2cosAsinC,則b=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.“a>b”是“a2>b2”的(  )條件.
A.充要B.必要不充分
C.充分不必要D.既不充分也不必要

查看答案和解析>>

同步練習冊答案