13.已知直線m,l和平面α,β,且l⊥α,m?β,給出下列四個命題:
①α∥β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β
其中真命題的有①③(請?zhí)顚懭空_命題的序號)

分析 直接利用空間中直線和平面的位置關(guān)系逐一核對四個命題得答案.

解答 解:在①中,由l⊥α,α∥β,得l⊥β,又m?β,故l⊥m,故①是真命題;
在②中,m可在平面β內(nèi)任意轉(zhuǎn)動,故l與m關(guān)系不確定,故②是假命題;
在③中,由l∥m,l⊥α,得m⊥α,又∵m?β,故α⊥β,故③是真命題;
在④中,平面β可繞m轉(zhuǎn)動,故α與β關(guān)系不確定,故④是假命題.
故答案為:①③.

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,空間直線與平面的位置關(guān)系,考查空間想象能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=$\frac{{\sqrt{2}}}{2}$(cosx-sinx)•sin($x+\frac{π}{4}$)-2asinx+b(a>0).
(1)若b=1,且對任意$x∈(0,\frac{π}{6})$,恒有f(x)>0,求a的取值范圍;
(2)若f(x)的最大值為1,最小值為-4,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC中,∠A、∠B、∠C成等差數(shù)列,且$a=2\sqrt{2}$,$b=2\sqrt{3}$.求:
(1)求∠A,∠C的大。
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)P(cosθ,tanθ)在第二象限,則角θ的終邊在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知tanα=2,求下列各式的值
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(Ⅱ)$\frac{1}{4}{sin^2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{cos^2}α+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)x,y是正實(shí)數(shù),記S為x,$y+\frac{1}{x}$,$\frac{1}{y}$中的最小值,則S的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.絕對值|x-1|的幾何意義是數(shù)軸上的點(diǎn)x與點(diǎn)1之間的距離,那么對于實(shí)數(shù)a,b,|x-a|+|x-b|的幾何意義即為點(diǎn)x與點(diǎn)a、點(diǎn)b的距離之和.
(1)直接寫出|x-1|+|x-2|與|x-1|+|x-2|+|x-3|的最小值,并寫出取到最小值時x滿足的條件;
(2)設(shè)a1≤a2≤…≤an是給定的n個實(shí)數(shù),記S=|x-a1|+|x-a2|+…+|x-an|.試猜想:若n為奇數(shù),則當(dāng)x∈{${a}_{\frac{n+1}{2}}$}時S取到最小值;若n為偶數(shù),則當(dāng)x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]時,S取到最小值;(直接寫出結(jié)果即可)
(3)求|x-1|+|2x-1|+|3x-1|+…+|10x-1|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.有如下幾個結(jié)論:
①若函數(shù)y=f(x)滿足:$f(x)=-\frac{1}{{f({x+1})}}$,則2為y=f(x)的一個周期,
②若函數(shù)y=f(x)滿足:f(2x)=f(2x+1),則$\frac{1}{2}$為y=f(x)的一個周期,
③若函數(shù)y=f(x)滿足:f(x+1)=f(1-x),則y=f(x+1)為偶函數(shù),
④若函數(shù)y=f(x)滿足:f(x+3)+f(1-x)=2,則(3,1)為函數(shù)y=f(x-1)的圖象的對稱中心.
正確的結(jié)論為①③(填上正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長的和為18,焦距為6,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案