設(shè)P為橢圓
x2
9
+
y2
4
=1上的一點(diǎn),F(xiàn)1、F2是該雙曲線(xiàn)的兩個(gè)焦點(diǎn),若|PF1|:|PF2|=2:1則△PF1F2的面積為(  )
A、2B、3C、4D、5
分析:先由雙曲線(xiàn)的方程求出|F1F2|=10,再由3|PF1|=4|PF2|,求出|PF1|=8,|PF2|=6,由此能夠推導(dǎo)出△PF1F2是直角三角形,其面積=
1
2
×|PF1| ×|PF2|
解答:解:∵|PF1|:|PF2|=2:1,
∴可設(shè)|PF1|=2k,|PF2|=k,
由題意可知2k+k=6,
∴k=2,
∴|PF1|=4,|PF2|=2,
∵|F1F2|=2
5
,
∴△PF1F2是直角三角形,
其面積=
1
2
×|PF1| ×|PF2|
=
1
2
× 4×2
=4.
故選C.
點(diǎn)評(píng):本題考查橢圓的性質(zhì),判斷出△PF1F2是直角三角形能夠簡(jiǎn)化運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓C:
x2
9
+
y2
5
=1
的左頂點(diǎn)、右焦點(diǎn)分別為A、F,右準(zhǔn)線(xiàn)為l,N為l上一點(diǎn),且在x軸上方,AN與橢圓交于點(diǎn)M.
(1)若AM=MN,求證:AM⊥MF;
(2)設(shè)過(guò)A,F(xiàn),N三點(diǎn)的圓與y軸交于P,Q兩點(diǎn),求PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P(x,y)為橢圓
x2
9
+
y2
4
=1
上的動(dòng)點(diǎn),A(a,0)(0<a<3)為定點(diǎn),已知|AP|的最小值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿(mǎn)足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線(xiàn)C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
④設(shè)定義在R上的兩個(gè)函數(shù)f(x)、g(x)都有最小值,且對(duì)任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)P(x,y)為橢圓
x2
9
+
y2
4
=1
上的動(dòng)點(diǎn),A(a,0)(0<a<3)為定點(diǎn),已知|AP|的最小值為1,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案