某地區(qū)1986年以來人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增.已知1986年底人均住房面積為10m2,2006年底人均住房面積為20m2.據(jù)此計算:
(1)1996年底人均住房面積超過14m2,試給出證明;
(2)若人口年平均增長率不超過3%,能否確保2008年底人均住房面積比2006年底有所增加?為什么?
【答案】分析:(1)根據(jù)人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增,可得2006年底人均住房面積,進而可得1996年底人均住房面積,故可證.
(2)線計算2008年與2006年底人均住房面積之差再利用導數(shù)的方法,即可解決.
解答:解:(1)設86年底人口總數(shù)為a,住宅總面積10a,年人口增長的公比為q(即后一年是前一年人口的q倍),年住宅總面積的公差為d,則2006年底人均住房面積為,則10d=5(2q20-1)a,
故1996年底人均住房面積
(2)2008年底人均住房面積,
2008年與2006年底人均住房面積之差
∵q>0,∴只需考慮分子f(q)=22q20-20q22-1=2q20(11-10q2)-1(q>1).
∵f'(q)=440(q19-q21)<0,∴f(q)單調遞減.
又q≤1.03,∴f(q)≥f(1.03)=2×1.0320(11-10×1.032)-1,
∴11-10×1.032>0.39,2×1.0320=2×(1+0.03)20>2×(1+20×0.03)=3.2.
∴f(q)>3.2×0.39-1>0.
此即表明,2008年底人均住房面積仍超過2006年底人均住房面積.
點評:本題以數(shù)列為載體,考查實際運用,關鍵是正確理解數(shù)列模型,從而構建代數(shù)式,有一定的綜合性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某地區(qū)1986年以來人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增.已知1986年底人均住房面積為10m2,2006年底人均住房面積為20m2.據(jù)此計算:
(1)1996年底人均住房面積超過14m2,試給出證明;
(2)若人口年平均增長率不超過3%,能否確保2008年底人均住房面積比2006年底有所增加?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地區(qū)1986年以來人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增.已知1986年底人均住房面積為10m2,2006年底人均住房面積為20m2.據(jù)此計算:
(1)1996年底人均住房面積超過14m2,試給出證明;
(2)若人口年平均增長率不超過3%,能否確保2008年底人均住房面積比2006年底有所增加?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源:2007年江蘇省南通市高三數(shù)學押題卷(35題)(解析版) 題型:解答題

某地區(qū)1986年以來人口總數(shù)和居民住宅總面積分別按等比數(shù)列和等差數(shù)列逐年遞增.已知1986年底人均住房面積為10m2,2006年底人均住房面積為20m2.據(jù)此計算:
(1)1996年底人均住房面積超過14m2,試給出證明;
(2)若人口年平均增長率不超過3%,能否確保2008年底人均住房面積比2006年底有所增加?為什么?

查看答案和解析>>

同步練習冊答案