(本小題滿分12分)
如圖直線lx軸、y軸的正半軸分別交于A(8,0)、B(0,6)兩點(diǎn),P為直線l上異于AB兩點(diǎn)之間的一動(dòng)點(diǎn). 且PQOAOB于點(diǎn)Q

(1)若和四邊形的面積滿足時(shí),請(qǐng)你確定P點(diǎn)在AB上的位置,并求出線段PQ的長(zhǎng);
(2)在x軸上是否存在點(diǎn)M,使△MPQ為等腰直角三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
(1)PAB的中點(diǎn),PQ=4;(2)點(diǎn)、的坐標(biāo)分別為(0,0),();或者點(diǎn)、的坐標(biāo)分別為(,0),();或者點(diǎn)、的坐標(biāo)分別為(,0),()。

試題分析:(1)
PAB的中點(diǎn), ∴PQ=="4" .--------------------------4分
(2)由已知得l方程為3x+4y="24" (*)

①當(dāng)∠PQM=90°時(shí),由PQOA且|PQ|=|MQ|此時(shí)M點(diǎn)與原點(diǎn)O重合,設(shè)Q(0,a)則P(a,a)
有(a,a)代入(*)式得a=.
點(diǎn)的坐標(biāo)分別為(0,0),()----------------------6分
②當(dāng)∠MPQ=90°,由PQOA 且|MP|=|PQ|設(shè)Q(0,a,)則M(0, a), Pa,a)進(jìn)而得a=
∴點(diǎn)、的坐標(biāo)分別為(,0),()----------------------8分
③當(dāng)∠PMQ=90°,由PQOA,|PM|=|MQ|且|OM|=|OQ|= |PQ|
設(shè)Q(0,a,)則Ma,0)點(diǎn)P坐標(biāo)為(2a,a)代入(*)式 得a=.
∴點(diǎn)、的坐標(biāo)分別為(,0),()----------------------12分
點(diǎn)評(píng):學(xué)生做此題的第二問(wèn)時(shí),一定要認(rèn)真審題,注意分類(lèi)討論思想的應(yīng)用。要滿足∆PQM為直角三角形,需要討論三個(gè)內(nèi)角分別為直角的情況。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果直線(m+4)x+(m+2)y+4=0與直線(m+2)x+(m+1)y-1=0互相平行,則實(shí)數(shù)m的值等于(   )
A.0B.2C.-2D.0或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,已知射線 ,過(guò)點(diǎn)作直線分別交射線于點(diǎn)、,若,則直線的斜率為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)則直線的方程是_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果,那么直線不經(jīng)過(guò)的象限是 (    )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線軸上的截距為,在軸上的截距為,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

坐標(biāo)原點(diǎn)到直線的距離為            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

4.已知過(guò)兩點(diǎn)的直線與直線平行,則
的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是(     )
A.x-2y-1=0B.x-2y+1="0" C.2x+y-2=0D.x+2y-1=0

查看答案和解析>>

同步練習(xí)冊(cè)答案