在△ABC中,AB=3,AC=2,BC=,則=( )
A.
B.
C.
D.
【答案】分析:在三角形中以兩邊為向量,求兩向量的數(shù)量積,夾角不知,所以要先用余弦定理求三角形一個內角的余弦,再用數(shù)量積的定義來求出結果.
解答:解:∵由余弦定理得cosA=,

,
故選D
點評:由已知條件產(chǎn)生數(shù)量積的關鍵是構造數(shù)量積,因為數(shù)量積的定義式中含有邊、角兩種關系.,所以本題能考慮到需要先求向量夾角的余弦值,有時數(shù)量積用坐標形式來表達.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=AC,D、E分別是AB、AC的中點,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=4,AC=2,S△ABC=2
3

(1)求△ABC外接圓的面積.
( 2)求cos(2B+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=a,AC=b,當
a
b
<0
時,△ABC為
鈍角三角形
鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=2,BC=3,AC=
7
,則△ABC的面積為
3
3
2
3
3
2
,△ABC的外接圓的面積為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
AB
=
a
AC
=
b
,M為AB的中點,
BN
=
1
3
BC
,則
 

查看答案和解析>>

同步練習冊答案