(2012•商丘二模)已知m>0,且mcosα-sinα=
5
sin(α+φ),則tanφ=( 。
分析:利用兩角和的正弦函數(shù)展開等式的右側(cè),列出方程組,然后求出tanφ即可.
解答:解:因?yàn)閙cosα-sinα=
5
sin(α+φ)=
5
cosφsinα+
5
sinφcosα,
所以
-1=
5
cosφ
m=
5
sinφ
,所以m2+1=5,所以m=2,
tanφ=-m=-2.
故選A.
點(diǎn)評(píng):本題考查三角函數(shù)的化簡求值,同角三角函數(shù)的基本關(guān)系式,兩角和的正弦函數(shù)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)已知
x2
a2
+
y2
b2
=1
(a>b>0),M,N是橢圓的左、右頂點(diǎn),P是橢圓上任意一點(diǎn),且直線PM、PN的斜率分別為k1,k2(k1k2≠0),若|k1|+|k2|的最小值為1,則橢圓的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)函數(shù)f(x)=x3-(
1
2
)
x-2
 
的零點(diǎn)所在區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)已知復(fù)數(shù)z=
1+2i
3-i
(i是虛數(shù)單位),則復(fù)數(shù)z的虛部是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點(diǎn),DE⊥面CBB1
(Ⅰ)證明:DE∥面ABC;
(Ⅱ)若BB1=BC,求CA1與面BB1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)已知函數(shù)f(x)=ex+2x2-3x.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f (1))處的切線方程;
(Ⅱ)當(dāng)x≥1時(shí),若關(guān)于x的不等式f(x)≥
52
x2+(a-3)x+1恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案