已知點(diǎn)A(0,2),B(2,0).若點(diǎn)C在函數(shù)y=x2的圖象上,則使得△ABC的面積為2的點(diǎn)C的個數(shù)為( )
A.4
B.3
C.2
D.1
【答案】分析:本題可以設(shè)出點(diǎn)C的坐標(biāo)(a,a2),求出C到直線AB的距離,得出三角形面積表達(dá)式,進(jìn)而得到關(guān)于參數(shù)a的方程,轉(zhuǎn)化為求解方程根的個數(shù)(不必解出這個跟),從而得到點(diǎn)C的個數(shù).
解答:解:設(shè)C(a,a2),由已知得直線AB的方程為,即:x+y-2=0
點(diǎn)C到直線AB的距離為:d=,
有三角形ABC的面積為2可得:
=|a+a2-2|=2
得:a2+a=0或a2+a-4=0,顯然方程共有四個跟,
可知函數(shù)y=x2的圖象上存在四個點(diǎn)(如上面圖中四個點(diǎn)C1,C2,C3,C4
使得△ABC的面積為2(即圖中的三角形△ABC1,△ABC2,△ABC3,△ABC4).
故應(yīng)選:A
點(diǎn)評:本題考查了截距式直線方程,點(diǎn)到直線的距離公式,三角形的面積的求法,就參數(shù)的值或范圍,考查了數(shù)形結(jié)合的思想
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,2)拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,線段FA交拋物線與點(diǎn)B,過B做l的垂線,垂足為M,若AM⊥MF,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,-2),B(0,4),動點(diǎn)P(x,y)滿足
PA
PB
=y2-8
;
(1)求動點(diǎn)P的軌跡方程;
(2)設(shè)(1)中所求軌跡方程與直線y=x+2交于C、D兩點(diǎn);求證OC⊥OD(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,2)、B(1,1),直線l 經(jīng)過點(diǎn)B且與線段OA相交.則直線 l 傾斜角α的取值范圍是
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)在直角坐標(biāo)平面上,已知點(diǎn)A(0,2),B(0,1),D(t,0)(t>0).點(diǎn)M是線段AD上的動點(diǎn),如果|AM|≤2|BM|恒成立,則正實(shí)數(shù)t的最小值是
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,-2),B(0,4),動點(diǎn)P(x,y)滿足
PA
PB
=y2-8
,則動點(diǎn)P的軌跡方程是
x2=2y
x2=2y

查看答案和解析>>

同步練習(xí)冊答案