在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn)M(1,-3),N(5,1),若點(diǎn)C滿足

,點(diǎn)C的軌跡與拋物線交于A、B兩點(diǎn).

(Ⅰ)求證:;

(Ⅱ)在軸正半軸上是否存在一定點(diǎn)P(m,0),使得過點(diǎn)P的任意一條拋物線的弦的長度是原點(diǎn)到該弦中點(diǎn)距離的2倍,若存在,求出m的值;若不存在,請說明理由.

 

【答案】

【解析】

解:(I)設(shè),由知,點(diǎn)C的軌跡為

消y得:

設(shè),則,,           

所以,

所以,于是.              

。á颍┘僭O(shè)存在過點(diǎn)P的弦EF符合題意,則此弦的斜率不為零,

設(shè)此弦所在直線的方程為

消x得:.設(shè),

.                           

因?yàn)檫^點(diǎn)P作拋物線的弦的長度是原點(diǎn)到弦的中點(diǎn)距離的2倍,

所以,即,  

所以滿足,所以存在。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
③直線l經(jīng)過無窮多個整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個不同的整點(diǎn)
④直線y=kx+b經(jīng)過無窮多個整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對稱的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊答案