函數(shù)數(shù)學(xué)公式的值域是________.

(-∞,1]
分析:令t=≥0,將函數(shù)轉(zhuǎn)化成關(guān)于t的一道定函數(shù)在定區(qū)間上的值域問(wèn)題,結(jié)合函數(shù)的圖象及函數(shù)在區(qū)間上的單調(diào)性,求得相應(yīng)的最值,從而得函數(shù)的值域.
解答:由于函數(shù)的定義域?yàn)閇,+∞),令t=≥0,可得 x=,
∴函數(shù)=t-,即 y=-t2+t-,此二次函數(shù)的對(duì)稱軸為x=1,開(kāi)口向下.
故當(dāng)t=1時(shí),函數(shù)有最大值為 1,當(dāng) t趨于+∞時(shí),y趨于-∞.
故函數(shù)的值域是(-∞,1],
故答案為 (-∞,1].
點(diǎn)評(píng):本題主要考查求函數(shù)的值域的方法,以及二次函數(shù)的性質(zhì)的應(yīng)用.換元法是一種重要的數(shù)學(xué)解題方法,掌握它的關(guān)鍵在于通過(guò)觀察、聯(lián)想,發(fā)現(xiàn)與構(gòu)造出變換式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、若函數(shù)y=2x的定義域是P={1,2,3},則該函數(shù)的值域是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、下表表示y是x的函數(shù),則函數(shù)的值域是
{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)二模)某同學(xué)為研究函數(shù)f(x)=
1+x2
+
1+(1-x)2
(0≤x≤1)
0<x<1)的性質(zhì),構(gòu)造了如圖所示的兩個(gè)邊長(zhǎng)為1的正方形ABCD和BEFC,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),設(shè)CP=x,則AP+PF=f(x).請(qǐng)你參考這些信息,推知函數(shù)的極值點(diǎn)是
1
2
1
2
,函數(shù)的值域是
[
5
,
2
+1
]
[
5
2
+1
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義函數(shù)f(x)=
2cosx,(sinx<cosx)
2sinx (sinx≥cosx)
,給出下列四個(gè)命題:①該函數(shù)的值域是[-2,2];②該函數(shù)是以π為最小正周期的周期函數(shù);③當(dāng)且僅當(dāng)x=2kπ-
π
2
(k∈Z)
時(shí)該函數(shù)取得最大值2;④當(dāng)且僅當(dāng)2kπ-π<x<2kπ-
π
2
(k∈Z)
時(shí),f(x)<0.上述命題中,錯(cuò)誤命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=2x的定義域是P={1,2,3},則該函數(shù)的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案