已知函數(shù)f(x)=
1
2x+1
,則f(
1
2
)+f(
1
3
)+f(
1
4
)+f(-
1
2
)+f(-
1
3
)+f(-
1
4
)
=
 
分析:觀察題設(shè),發(fā)現(xiàn)求值表達(dá)式中數(shù)目較多,且可按自變量和為0分為三組,故研究方向確定為探究自變量的和為0時(shí),函數(shù)值的和是多少.
解答:解:由題設(shè)知f(x)=
1
2x+1

 又f(x)+f(-x)=
1
2x+1
+
1
2-x+1
=
1
2x+1
+
2x
2x+1
=
2x+1
2x+1
=1
 故f(
1
2
)+f(
1
3
)+f(
1
4
)+f(-
1
2
)+f(-
1
3
)+f(-
1
4
)

=f(
1
2
)+f(-
1
2
)
+f(
1
3
)+f(-
1
3
)
+f(
1
4
)+f(-
1
4
)

=1+1+1=3,
故答案為3.
點(diǎn)評(píng):本題考點(diǎn)是求函數(shù)的值,屬于技巧性求值的題型,考查觀察探究的能力,學(xué)習(xí)者應(yīng)在題后好好總結(jié)此類題的做題思想與做題的規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時(shí)滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案