設(shè)函數(shù)f(x)是定義在R上以3為周期的奇函數(shù),若f(1)>1,f(2)=,則 a的取值范圍是( )
A.a(chǎn)<
B.a(chǎn)<且a≠-1
C.a(chǎn)>或a<-1
D.-1<a<
【答案】分析:先利用函數(shù)f(x)是定義在實(shí)數(shù)集上的以3為周期的奇函數(shù)得f(2)=f(-1)=-f(1),再利用f(1)>1代入即可求a的取值范圍.
解答:解:因為函數(shù)f(x)是定義在實(shí)數(shù)集上的以3為周期的奇函數(shù),
所以f(2)=f(-1)=-f(1).
又因為f(1)>1,故f(2)<-1,
<-1⇒
解可得-1<a<
故選D.
點(diǎn)評:本題主要考查了函數(shù)的周期性,以及函數(shù)奇偶性的性質(zhì)和分式不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),如果不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當(dāng)x∈[-1,0)時,f(x)=x3-ax(a∈R).
(1)當(dāng)x∈(0,1]時,求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當(dāng)x∈(0,1]時,f(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù).若當(dāng)x≥0時,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)請你作出函數(shù)f(x)的大致圖象.
(3)當(dāng)0<a<b時,若f(a)=f(b),求ab的取值范圍.
(4)若關(guān)于x的方程f2(x)+bf(x)+c=0有7個不同實(shí)數(shù)解,求b,c滿足的條件.

查看答案和解析>>

同步練習(xí)冊答案