當(dāng)m∈
 
時(shí),函數(shù)f(x)=(m-2)x2-2mx-3+2m的圖象總在x軸下方.
分析:函數(shù)f(x)=(m-2)x2-2mx-3+2m的圖象總在x軸下方,即f(x)<0恒成立,只要考慮開口方向和△即可,勿忘m-2=0的情況.
解答:解:函數(shù)f(x)=(m-2)x2-2mx-3+2m的圖象總在x軸下方,即f(x)<0恒成立,
當(dāng)m-2=0,即m=2時(shí),f(x)=-4x+1,不滿足要求;
當(dāng)m≠2時(shí),只要
m-2<0
△=4m2-4(m-2)(-3+2m)<0

解得m<1
故答案為:(-∞,1)
點(diǎn)評(píng):本題考查二次函數(shù)恒成立問題,屬基礎(chǔ)知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式2(log
1
2
x)2+9(log
1
2
x)+9≤0的解集為M,求當(dāng)x∈M時(shí),函數(shù)f(x)=(log2
x
2
)•(log2
x
8
)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象可由函數(shù)g(x)=
4x+m2
2x
(m為非零常數(shù))
的圖象向右平移兩個(gè)單位而得到.
(1)寫出函數(shù)f(x)的解析式;
(2)證明函數(shù)f(x)的圖象關(guān)于直線y=x對(duì)稱;
(3)問:是否存在集合M,當(dāng)x∈M時(shí),函數(shù)f(x)的最大值為2+m2,最小值為2-
m2
9
;若存在,試求出一個(gè)集合M;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式2(lo
g
x
0.5
2+7lo
g
x
0.5
+3≤0的解集為M,求當(dāng)x∈M時(shí),函數(shù)f(x)=(lo
g
x
2
2
)(lo
g
x
4
2
)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第2章 函數(shù)):2.8 一次函數(shù)、二次函數(shù)(解析版) 題型:解答題

當(dāng)m∈    時(shí),函數(shù)f(x)=(m-2)x2-2mx-3+2m的圖象總在x軸下方.

查看答案和解析>>

同步練習(xí)冊(cè)答案