拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個點(diǎn)到準(zhǔn)線x=-2的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時與直線l1:y=x和l2:y=-x相切的圓,

(1)求定點(diǎn)N的坐標(biāo);

(2)是否存在一條直線l同時滿足下列條件:

①l分別與直線l1和l2交于A、B兩點(diǎn),且AB中點(diǎn)為E(4,1);

②l被圓N截得的弦長為2.

 

(1)(2,0)(2)不存在滿足條件的直線l.

【解析】(1)因?yàn)閽佄锞y2=2px的準(zhǔn)線方程為x=-2.所以p=4,根據(jù)拋物線的定義可知點(diǎn)N是拋物線的焦點(diǎn),所以定點(diǎn)N的坐標(biāo)為(2,0).

(2)假設(shè)存在直線l滿足兩個條件,顯然l斜率存在,設(shè)l的方程為y-1=k(x-4),k≠±1.以N為圓心,同時與直線l1:y=x和l2:y=-x相切的圓N的半徑為.因?yàn)閘被圓N截得的弦長為2,所以圓心到直線的距離等于1,即d==1,解得k=0或,當(dāng)k=0時,顯然不合AB中點(diǎn)為E(4,1)的條件,矛盾,當(dāng)k=時,l的方程為4x-3y-13=0.由,解得點(diǎn)A的坐標(biāo)為(13,13);由,解得點(diǎn)B的坐標(biāo)為.顯然AB中點(diǎn)不是E(4,1),矛盾,所以不存在滿足條件的直線l.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第5課時練習(xí)卷(解析版) 題型:解答題

電視臺綜藝頻道組織的闖關(guān)游戲,游戲規(guī)定前兩關(guān)至少過一關(guān)才有資格闖第三關(guān),闖關(guān)者闖第一關(guān)成功得3分,闖第二關(guān)成功得3分,闖第三關(guān)成功得4分.現(xiàn)有一位參加游戲者單獨(dú)闖第一關(guān)、第二關(guān)、第三關(guān)成功的概率分別為、、,記該參加者闖三關(guān)所得總分為ξ.

(1)求該參加者有資格闖第三關(guān)的概率;

(2)求ξ的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時練習(xí)卷(解析版) 題型:填空題

使得(n∈N+)的展開式中含有的常數(shù)項最小的n為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時練習(xí)卷(解析版) 題型:解答題

求滿足下列條件的拋物線的標(biāo)準(zhǔn)方程,并求對應(yīng)拋物線的準(zhǔn)線方程.

(1)過點(diǎn)(-3,2);

(2)焦點(diǎn)在直線x-2y-4=0上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時練習(xí)卷(解析版) 題型:解答題

如圖,等邊三角形OAB的邊長為8,且其三個頂點(diǎn)均在拋物線E:x2=2py(p>0)上.

(1)求拋物線E的方程;

(2)設(shè)動直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q.證明:以PQ為直徑的圓恒過y軸上某定點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時練習(xí)卷(解析版) 題型:填空題

已知斜率為2的直線l過拋物線y2=ax(a>0)的焦點(diǎn)F,且與y軸相交于點(diǎn)A,若△OAF(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線方程為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時練習(xí)卷(解析版) 題型:填空題

已知△ABC外接圓半徑R=,且∠ABC=120°,BC=10,邊BC在x軸上且y軸垂直平分BC邊,則過點(diǎn)A且以B、C為焦點(diǎn)的雙曲線方程為______________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時練習(xí)卷(解析版) 題型:填空題

雙曲線=1的漸近線方程為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第6課時練習(xí)卷(解析版) 題型:填空題

已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A與橢圓的焦點(diǎn)F1重合,且橢圓的另外一個焦點(diǎn)F2在BC邊上,則△ABC的周長是________.

 

查看答案和解析>>

同步練習(xí)冊答案