分析 由題意知$\overrightarrow{a}$+$\overrightarrow$=(cosx+1,sinx+$\sqrt{3}$),根據(jù)向量模長公式以及三角化簡即可得|$\overrightarrow{a}$+$\overrightarrow$|的最大值;
解答 解:由題意:$\overrightarrow{a}$+$\overrightarrow$=(cosx+1,sinx+$\sqrt{3}$)
|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{(cosx+1)^{2}+(sinx+\sqrt{3})^{2}}$
=$\sqrt{5+2cosx+2\sqrt{3}sinx}$
令h=2cosx+2$\sqrt{3}$sinx
=4×($\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx)
=4sin(x+$\frac{π}{6}$),故h的最大為4;
所以,|$\overrightarrow{a}$+$\overrightarrow$|的最大值為3;
故答案為:3
點評 本題主要考查了向量的加法運算、向量模長公式以及三角函數(shù)化簡求最值等知識點,屬基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1200 | B. | 3612 | C. | 3528 | D. | 1280 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $1\frac{15}{66}$ | B. | $1\frac{3}{22}$ | C. | $2\frac{15}{66}$ | D. | $2\frac{3}{22}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com