17.已知向量$\overrightarrow{a}$=(cos x,sin x),向量$\overrightarrow$=(1,$\sqrt{3}$),則|$\overrightarrow{a}$+$\overrightarrow$|的最大值為3 .

分析 由題意知$\overrightarrow{a}$+$\overrightarrow$=(cosx+1,sinx+$\sqrt{3}$),根據(jù)向量模長公式以及三角化簡即可得|$\overrightarrow{a}$+$\overrightarrow$|的最大值;

解答 解:由題意:$\overrightarrow{a}$+$\overrightarrow$=(cosx+1,sinx+$\sqrt{3}$)
|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{(cosx+1)^{2}+(sinx+\sqrt{3})^{2}}$
=$\sqrt{5+2cosx+2\sqrt{3}sinx}$
令h=2cosx+2$\sqrt{3}$sinx
=4×($\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx)
=4sin(x+$\frac{π}{6}$),故h的最大為4;
所以,|$\overrightarrow{a}$+$\overrightarrow$|的最大值為3;
故答案為:3

點評 本題主要考查了向量的加法運算、向量模長公式以及三角函數(shù)化簡求最值等知識點,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)滿足f(3x)=x,則f(2)=(  )
A.log32B.log23C.ln2D.ln3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知$cos(\frac{5π}{2}+α)=\frac{3}{5}$,$-\frac{π}{2}<α<0$,則sin2α的值是-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.大衍數(shù)列,來源于中國古代著作《乾坤譜》中對易傳“大衍之數(shù)五十”的推論.其前10項為:0、2、4、8、12、18、24、32、40、50.通項公式:an=$\left\{\begin{array}{l}{\frac{{n}^{2}-1}{2},n為奇數(shù)}\\{\frac{{n}^{2}}{2},n為偶數(shù)}\end{array}\right.$,如果把這個數(shù)列{an}排成如圖形狀,并記A(m,n)表示第m行中從左向右第n個數(shù),則A(10,4)的值為( 。
A.1200B.3612C.3528D.1280

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知等比數(shù)列{an}的前n項和為Sn,若${S_n}=p•{3^n}-2$,則p等于(  )
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,在矩形ABCD中,M是BC的中點,N是CD的中點,若$\overrightarrow{AC}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{BN}$,則λ+μ=(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某中學奧數(shù)培訓班共有14人,分為兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,其中甲組學生成績的平均數(shù)是88,乙組學生成績的中位數(shù)是89,則n-m的值(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在公比為2的等比數(shù)列{an}中,a2與a5的等差中項是$9\sqrt{3}$.
(1)求a1的值;
(2)若函數(shù)$y=|{a_1}|sin(\frac{π}{4}x+φ)(|φ|<π)$的一部分圖象如圖所示,M(-1,|a1|),N(3,-|a1|)為圖象上的兩點,設(shè)∠MPN=β,其中P與坐標原點O重合,0<β<π,求sin(2φ-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.《九章算術(shù)》是我國古代的優(yōu)秀數(shù)學著作,在人類歷史上第一次提出負數(shù)的概率,內(nèi)容涉及方程、幾何、數(shù)列、面積、體積的計算等多方面,書的第6卷19題:“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升.”如果竹由下往上均勻變細(各節(jié)容量成等差數(shù)列),則其余兩節(jié)的容量共多少升( 。
A.$1\frac{15}{66}$B.$1\frac{3}{22}$C.$2\frac{15}{66}$D.$2\frac{3}{22}$

查看答案和解析>>

同步練習冊答案