已知{an}為等差數(shù)列,其前n項和為Sn.若a1=1,a3=5,Sn=64,則n=
 
分析:設公差為d,則由a3-a1=2d,求得d的值,再根據(jù)等差數(shù)列的前n項和公式,求出n的值.
解答:解:設公差為d,則由a3-a1=2d=5-1,可得 d=2.
∵Sn=64=n×a1+
n(n-1)d
2
=n+n(n-1),解得 n=8,
故答案為:8.
點評:本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的通項公式,等差數(shù)列的前n項和公式,求出公差,是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( 。=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)an的前n項和為Sn,S10=
3
0
(1+3x)dx
,則a5+a6=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)到{an}中,a1=120,公差d=-4,Sn為其前n項和,若Sn≤an(n≥2).則n的最小值為(    )

A.60                  B.62              C.70               D.72

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a(  )=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年江蘇省蘇州市高三教學調(diào)研數(shù)學試卷(解析版) 題型:解答題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( )=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為   

查看答案和解析>>

同步練習冊答案