5.(文)如圖矩形ABCD所在的平面與三角形CDE所在的平面交于CD,AE⊥平面CDE.
求證:
(1)AB∥平面CDE;
(2)CD⊥平面ADE.

分析 (1)證明AB∥CD,利用線面平行的判定定理,證明AB∥平面CDE;
(2)證明AE⊥CD,CD⊥AD,即可證明CD⊥平面ADE.

解答 證明:(1)在矩形ABCD中,AB∥CD
因?yàn)锳B?平面CDE,CD?平面CDE
所以AB∥平面CDE…(6分)
(2)因?yàn)锳E⊥平面CDE,且CD?平面CDE,所以AE⊥CD,
在矩形ABCD中,CD⊥AD且AE∩AD=A,所以CD⊥平面ADE   …(12分)

點(diǎn)評(píng) 本題考查線面平行、線面垂直的證明,考查學(xué)生分析解決問(wèn)題的能力,正確運(yùn)用線面平行、線面垂直的判定定理是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)y=ln(-x2+2x+8)的單調(diào)遞增區(qū)間是(  )
A.(-∞,1)B.(-2,1)C.(1,4)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在區(qū)域$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥0\end{array}\right.$內(nèi)任取一點(diǎn)P,則點(diǎn)P落在單位圓x2+y2=2內(nèi)的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.雙曲線的兩條漸近線為x±2y=0,則它的離心率為$\sqrt{5}或\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ x≤0\end{array}\right.$,在此可行域中隨機(jī)選取x,y,則x+2y≤2的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)$f(x)=\frac{{\sqrt{x+4}+\sqrt{1-2x}}}{{{x^2}-1}}$的定義域?yàn)椋ā 。?table class="qanwser">A.$[-4,-1)∪(-1,\frac{1}{2}]$B.[-4,-1)∪(-1,1)C.$[\frac{1}{2},1)∪(1,+∞)$D.[-4,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=alnx-x2+1.
(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若a<0,且對(duì)任意x1,x2∈(0,+∞),都有|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,又知BA1⊥AC1,CC1的中點(diǎn)為E.
(1)求三棱錐E-C1AB的體積;
(2)求二面角B-AE-A1的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.汽車(chē)是碳排放量比較大的行業(yè)之一,歐盟規(guī)定,從2012年開(kāi)始,將對(duì)CO2排放量超過(guò)130g/km的不達(dá)標(biāo)M1型新車(chē)進(jìn)行懲罰,某檢測(cè)單位對(duì)甲、乙兩類(lèi)M1型品牌車(chē)各抽取5輛進(jìn)行CO2排放量檢測(cè),記錄如表(單位:g/km):
80110135135140
100xy125155
經(jīng)測(cè)算發(fā)現(xiàn),兩種品牌車(chē)CO2排放量的平均值相等,
(1)求x與y的函數(shù)關(guān)系式,并求出當(dāng)x,y分別為何值時(shí),乙品牌汽車(chē)CO2排放量的穩(wěn)定性最好?
(2)在(1)的條件下,為了跟蹤檢測(cè)兩種品牌汽車(chē)的質(zhì)量穩(wěn)定性,將在兩種品牌汽車(chē)中各抽取2輛車(chē)進(jìn)行長(zhǎng)期跟蹤監(jiān)測(cè),設(shè)抽取的4輛車(chē)中CO2排放量不達(dá)標(biāo)的數(shù)量為X,求X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案