已知b>0,直線x-b2y-1=0與直線(b2+1)x+ay+2=0互相垂直,ab的最小值等于(  )

(A)1 (B)2 (C)2 (D)2

 

B

【解析】【思路點(diǎn)撥】先由兩直線垂直可得到關(guān)于a,b的一個(gè)等式,再將ab用一個(gè)字母來表示,進(jìn)而求出最值.

∵直線x-b2y-1=0與直線(b2+1)x+ay+2=0互相垂直,

(b2+1)-b2a=0,a=,

ab=()b==b+2(當(dāng)且僅當(dāng)b=1時(shí)取等號),ab的最小值等于2.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十九第十章第六節(jié)練習(xí)卷(解析版) 題型:填空題

O有一內(nèi)接正三角形,向圓O內(nèi)隨機(jī)投一點(diǎn),則該點(diǎn)落在內(nèi)接正三角形內(nèi)的概率是    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)八十選修4-5第二節(jié)練習(xí)卷(解析版) 題型:解答題

已知a1=1,a2=4,an+2=4an+1+an,bn=,nN+.

(1)b1,b2,b3的值.

(2)設(shè)cn=bnbn+1,Sn為數(shù)列{cn}的前n項(xiàng)和,求證: Sn17n.

(3)求證:|b2n-bn|<·.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)八十一選修4-5第三節(jié)練習(xí)卷(解析版) 題型:解答題

已知實(shí)數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5,試求a的最值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十第八章第一節(jié)練習(xí)卷(解析版) 題型:填空題

經(jīng)過點(diǎn)(-2,2),且與兩坐標(biāo)軸所圍成的三角形面積為1的直線l的方程為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十第八章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

已知直線l1:y=2x+1,l2:y=2x+5,則直線l1l2的位置關(guān)系是(  )

(A)重合 (B)垂直

(C)相交但不垂直 (D)平行

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十四第八章第五節(jié)練習(xí)卷(解析版) 題型:填空題

在平面直角坐標(biāo)系xOy,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F2x軸上,離心率為.F1的直線lCA,B兩點(diǎn),且△ABF2的周長為16,那么C的方程為      .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十六第八章第七節(jié)練習(xí)卷(解析版) 題型:選擇題

已知拋物線y2=2px(p>0)上的一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線-y2=1的左頂點(diǎn)為A,若雙曲線的一條漸近線與直線AM平行,則實(shí)數(shù)a的值為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

在同一坐標(biāo)系下,直線ax+by=ab和圓(x-a)2+(y-b)2=r2(ab0,r>0)的圖象可能是(  )

 

 

查看答案和解析>>

同步練習(xí)冊答案