【題目】如圖所示的多面體中,底面為正方形,為等邊三角形,平面,,點是線段上除兩端點外的一點.
(1)若點為線段的中點,證明:平面;
(2)若二面角的余弦值為,試通過計算說明點的位置.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是一塊平行四邊形園地,經(jīng)測量,.擬過線段上一點 設(shè)計一條直路(點在四邊形的邊上,不計直路的寬度),將該園地分為面積之比為的左,右兩部分分別種植不同花卉.設(shè)(單位:m).
(1)當(dāng)點與點重合時,試確定點的位置;
(2)求關(guān)于的函數(shù)關(guān)系式;
(3)試確定點的位置,使直路的長度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三陵錐中,為等腰直角三角形,,為正三角形,為的中點.
(1)證明:平面平面;
(2)若二面角的平面角為銳角,且棱錐的體積為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)為了了解某產(chǎn)品年產(chǎn)量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
x | 1 | 2 | 3 | 4 | 5 |
y | 17.0 | 16.5 | 15.5 | 13.8 | 12.2 |
(1)求y關(guān)于x的線性回歸方程;
(2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時,年利潤w取到最大值?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點.
(1)求橢圓的方程;
(2)過點的直線與橢圓交于不同兩點、,且滿足條件的點在橢圓上,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代有著輝煌的數(shù)學(xué)研究成果,其中《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》有著豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn).這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.現(xiàn)擬從這5部專著中選擇2部作為學(xué)生課外興趣拓展參考書目,則所選2部專著中至少有一部不是漢、魏、晉、南北朝時期專著的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左、右焦點分別是,,點為的上頂點,點在上,,且.
(1)求的方程;
(2)已知過原點的直線與橢圓交于,兩點,垂直于的直線過且與橢圓交于,兩點,若,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com