如圖,在矩形中,分別為四邊的中點(diǎn),且都在坐標(biāo)軸上,設(shè),

(Ⅰ)求直線(xiàn)的交點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)圓上一點(diǎn)作圓的切線(xiàn)與軌跡交于兩點(diǎn),若,試求出的值.
(1)
(2)

試題分析:解:(I)設(shè),由已知得
則直線(xiàn)的方程為,直線(xiàn)的方程為,  4分
消去即得的軌跡的方程為. 6分
(II)方法一:由已知得,又,則, 8分
設(shè)直線(xiàn)代入,
設(shè)
.…10分
,
,
,  12分
到直線(xiàn)的距離為,故
經(jīng)檢驗(yàn)當(dāng)直線(xiàn)的斜率不存在時(shí)也滿(mǎn)足.  14分
方法二:設(shè),則,且可得直線(xiàn)的方程為…10分
代入
,即,…12分
,故. 14分
點(diǎn)評(píng):主要是考查了直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用,運(yùn)用代數(shù)的方法來(lái)解決幾何問(wèn)題,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),右準(zhǔn)線(xiàn)為,離心率為.若直線(xiàn)與橢圓交于不同的兩點(diǎn),以線(xiàn)段為直徑作圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若圓軸相切,求圓被直線(xiàn)截得的線(xiàn)段長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率,它的一個(gè)頂點(diǎn)恰好是拋物線(xiàn)的焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與曲線(xiàn)的交點(diǎn)為、,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)AB是橢圓的長(zhǎng)軸,點(diǎn)C在上,且,若AB=4,,則的兩個(gè)焦點(diǎn)之間的距離為_(kāi)_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線(xiàn)l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓的方程為,過(guò)點(diǎn)作圓的兩條切線(xiàn),切點(diǎn)分別為、,直線(xiàn)恰好經(jīng)過(guò)橢圓的右頂點(diǎn)和上頂點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓垂直于軸的一條弦,所在直線(xiàn)的方程為是橢圓上異于、的任意一點(diǎn),直線(xiàn)、分別交定直線(xiàn)于兩點(diǎn)、,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)P(4, 4),圓C:與橢圓E:有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線(xiàn)PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的左焦點(diǎn)為F,右頂點(diǎn)為A,以FA為直徑的圓經(jīng)過(guò)橢圓的上頂點(diǎn),則橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)橢圓的右焦點(diǎn)F2作傾斜角為弦AB,則|AB︳為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案