【題目】AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)C的直線(xiàn)VC垂直于圓O所在平面,D,E分別是VA,VC的中點(diǎn).
(1)判斷直線(xiàn)DE與平面VBC的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)△VAB為邊長(zhǎng)為的正三角形時(shí),求四面體V﹣DEB的體積.
【答案】(1)⊥平面,理由見(jiàn)解析(2)
【解析】
(1)由已知可得AC⊥BC,AC⊥VC,可證AC⊥平面VBC,D,E分別是VA,VC的中點(diǎn),有DE∥AC,即可證明結(jié)論;
(2)由已知可證△VBC≌△VAC,得到BC=AC,進(jìn)而求出BC,AC,VC值,利用等體積法有,即可求解.
(1)DE⊥平面VBC,證明如下:
∵AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),
∴AC⊥BC,∵過(guò)動(dòng)點(diǎn)C的直線(xiàn)VC垂直于圓O所在平面,
AC平面ABC,∴AC⊥VC,∵BC∩VC=C,
∴AC⊥平面VBC,∵D,E分別是VA,VC的中點(diǎn),
∴DE∥AC,∴DE⊥平面VBC.
(2)∵△VAB為邊長(zhǎng)為的正三角形,
AB是圓O的直徑,點(diǎn)C是圓O上異于AB的動(dòng)點(diǎn),
過(guò)動(dòng)點(diǎn)C的直線(xiàn)VC垂直于圓O所在平面,
D,E分別是VA,VC的中點(diǎn),∴△VBC≌△VAC,∴BC=AC,∴BC2+AC2=AB2=8.∴AC=BC=2,
D,E分別是VA,VC的中點(diǎn),∴DE==1,
∴四面體V﹣DEB的體積為:
=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線(xiàn),
(1)求證:直線(xiàn)恒過(guò)定點(diǎn);
(2)判斷直線(xiàn)被圓截得的弦長(zhǎng)何時(shí)最長(zhǎng),何時(shí)最短?并求截得的弦長(zhǎng)最短時(shí),求的值以及最短長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題為真命題的序號(hào)是__________.
①“若則”是真命題.
②“若則”的逆命題是真命題.
③,“”是“”的充分不必要條件.
④“”是“直線(xiàn)與直線(xiàn)互相垂直”的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線(xiàn)過(guò)原點(diǎn)且傾斜角為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.在平面直角坐標(biāo)系中,曲線(xiàn)與曲線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng).
(Ⅰ)求曲線(xiàn)的極坐標(biāo)方程;
(Ⅱ)若直線(xiàn)過(guò)原點(diǎn)且傾斜角為,設(shè)直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為平行四邊形,平面平面,是邊長(zhǎng)為4的等邊三角形,,是的中點(diǎn).
(1)求證:;
(2)若直線(xiàn)與平面所成角的正弦值為,求平面 與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)求直線(xiàn)PE與平面PBC所成角的正弦值.
(3)在PC上是否存在一點(diǎn)Q,使得平面QAD與平面PBC所成銳二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,且橢圓過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)與交于,兩點(diǎn),點(diǎn)在上,是坐標(biāo)原點(diǎn),若,判斷四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的序號(hào)是____________(寫(xiě)出所有正確命題的序號(hào))
(1)“為實(shí)數(shù)”是“為有理數(shù)”的充分不必要條件;
(2)“”是“”的充要條件
(3)“”是“”的必要不充分條件;
(4)“,”是“”的充分不必要條件;
(5)的三個(gè)內(nèi)角為.“”是“”的充要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com