計(jì)算:?

       (1)(1+i)(1-i);?

       (2)(1+i)6;?

       (3).?

      

思路分析:運(yùn)用復(fù)數(shù)代數(shù)形式下的乘、除、乘方法則即可解決.

       解:(1)(1+i)(1-i)=1-i+i-i2=1+1=2;?

       (2)(1+i)6=[(1+i)23=(2i)3=-8i;?

       (3)=i.

       溫馨提示:注意掌握有關(guān)規(guī)律:(1±i)2=±2i,=i,=-i及相關(guān)運(yùn)算法則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于正整數(shù)k,g(k)表示k的最大奇因數(shù),如g(1)=1,g(2)=1,g(3)=3,g(4)=1,…,記f(n)=g(1)+g(2)+g(3)+…+g(2n),其中n為正整數(shù).
(1)分別計(jì)算g(1)+g(3)+g(5)+g(7);g(1)+g(2)+g(3)+g(4);g(2)+g(4)+g(6)+g(8);
(2)求證:當(dāng)n≥2時(shí),f(n)=4n-1+f(n-1);
(3)記an=f(n+1)+k(-1)nf(n),當(dāng){an}為遞增數(shù)列時(shí),求實(shí)數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過計(jì)算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1
將以上各式分別相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即:1+2+3+…+n=
n(n+1)2

類比上述求法:請(qǐng)你求出12+22+32+…+n2的值(要求必須有運(yùn)算推理過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
1
-1
(2
1-x2
-sinx)dx
=
π
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地今年年初有居民住房面積為am2,其中需要拆除的舊房面積占了一半.當(dāng)?shù)赜嘘P(guān)部門決定每年以當(dāng)年年初住房面積的10%的住房增長(zhǎng)率建設(shè)新住房,同時(shí)每年拆除xm2的舊住房,又知該地區(qū)人口年增長(zhǎng)率為4.9‰.
(1)如果10年后該地的人均住房面積正好比目前翻一番,那么每年應(yīng)拆除的舊住房面積x是多少?
(2)依照(1)拆房速度,再過多少年能拆除所有需要拆除的舊住房?
下列數(shù)據(jù)供學(xué)生計(jì)算時(shí)參考:
1.19=2.38 1.00499=1.04
1.110=2.6 1.004910=1.05
1.111=2.85 1.004911=1.06

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:1;1-4;1-4+9;1-4+9-16…各項(xiàng)的值,可以猜測(cè):n∈N*,1-4+9-16+…+(-1)n+1n2=
1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n)
1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n)

查看答案和解析>>

同步練習(xí)冊(cè)答案