已知函數(shù)f(x)=lnx,g(x)=(m+1)x2﹣x(m≠﹣1).
(I)若函數(shù)y=f(x)與y=g(x)的圖象在公共點(diǎn)P處有相同的切線(xiàn),求實(shí)數(shù)m的值和P的坐標(biāo);
(II)若函數(shù)y=f(x)與y=g(x)的圖象有兩個(gè)不同的交點(diǎn)M、N,求實(shí)數(shù)m的取值范圍;
(III)在(II)的條件下,過(guò)線(xiàn)段MN的中點(diǎn)作x軸的垂線(xiàn)分別與f(x)的圖象和g(x)的圖象交于S、T點(diǎn),以S點(diǎn)為切點(diǎn)作f(x)的切線(xiàn)l1,以T為切點(diǎn)作g(x)的切線(xiàn)l2,是否存在實(shí)數(shù)m,使得l1l2?如果存在,求出m的值;如果不存在,請(qǐng)說(shuō)明理由.
解:(I)設(shè)函數(shù)y=f(x)與y=g(x)圖象的公共點(diǎn)為P(x0,y0),
則有l(wèi)nx0=(m+1)x02﹣x0①,
又在點(diǎn)P處有共同的切線(xiàn),
,②
②代入①,得
設(shè)
所以,函數(shù)h(x)最多只有1個(gè)零點(diǎn),觀(guān)察得x0=1是零點(diǎn),
故m=0.
此時(shí),點(diǎn)P(1,0);
(II)根據(jù)(I)知,當(dāng)m=0時(shí),兩條曲線(xiàn)切于點(diǎn)P(1,0),
此時(shí),變化的y=g(x)的圖象的對(duì)稱(chēng)軸是x=
而y=f(x)是固定不變的,如果繼續(xù)讓對(duì)稱(chēng)軸向右移動(dòng),即,
解得﹣1<m<0.
兩條曲線(xiàn)有兩個(gè)不同的交點(diǎn),
當(dāng)m<﹣1時(shí),開(kāi)口向下,只有一個(gè)交點(diǎn),顯然不合題意,所以,有﹣1<m<0;
(III)假設(shè)存在這樣的m,不妨設(shè)M(x1,y1),N(x2,y2),且x1x2
則MN中點(diǎn)的坐標(biāo)為
以S為切線(xiàn)的切線(xiàn)l1的斜率,
以T為切點(diǎn)的切線(xiàn)l2的斜率
如果存在m,使得ks=kT,即.③
而且有l(wèi)nx1=(m+1)x12﹣x1和lnx2=(m+1)x22﹣x2
如果將③的兩邊同乘以x1﹣x2,得
,
,
也就是
設(shè)μ=,則有
(μ>1),

∵μ>1,
∴h'(μ)>0.因此,h(μ)在[1,+∞]上單調(diào)遞增,
故h(μ)>h(1)=0.

∴④與⑤矛盾.
所以,不存在實(shí)數(shù)m使得l1l2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線(xiàn)l:y=kx-2與曲線(xiàn)y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線(xiàn)l∥AB,則稱(chēng)直線(xiàn)AB存在“伴侶切線(xiàn)”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱(chēng)直線(xiàn)AB存在“中值伴侶切線(xiàn)”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線(xiàn)AB是否存在“中值伴侶切線(xiàn)”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線(xiàn)l過(guò)點(diǎn)(0,-1),并且與曲線(xiàn)y=f(x)相切,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線(xiàn)C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線(xiàn)l,使得l為曲線(xiàn)C的對(duì)稱(chēng)軸?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案