如圖,在四棱柱中,底面是正方形,側(cè)棱與底面垂直,點(diǎn)是正方形對(duì)角線的交點(diǎn),,點(diǎn),分別在和上,且.
(Ⅰ)求證:∥平面;
(Ⅱ)若,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角的余弦值.
解:(Ⅰ)證明:取,連結(jié)和,
∴,∥,,∥,
∴,∥.
∴四邊形為平行四邊形,
∴∥,
在矩形中,,
∴四邊形為平行四邊形.
∴∥,∥.
∵平面,平面,
∴∥平面. ————————4分
(Ⅱ)連結(jié),在正四棱柱中,
平面,
∴,,
∴平面,
∴.
由已知,得平面.
∴,,
在△與△中, ,,
∴△∽△
∴,.—————————9分
(Ⅲ)以為原點(diǎn),,,所在直線為,,軸,建立空間直角坐標(biāo)系.
.
,
由(Ⅱ)知為平面的一個(gè)法向量,
設(shè)為平面的一個(gè)法向量,
則 ,即 ,
令,所以 .
∴,
∵二面角的平面角為銳角,
∴二面角的余弦值為. —————————13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省高三第三次考試?yán)砜茢?shù)學(xué) 題型:解答題
本小題滿分12分)
如圖,在四棱柱中,底面為直角梯形,,,平面,與平面成角.
(Ⅰ)若,為垂足,求證:
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:選擇題
如圖,在四棱柱中,底面是正方形,側(cè)棱與底面垂直,分別是,的中點(diǎn),則以下結(jié)論中不成立的是( )
A.與垂直 B.與垂直
C.與異面 D.與異面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題共14分)
如圖,在四棱柱中,底面是正方形,側(cè)棱與底面垂直,點(diǎn)是正方形對(duì)角線的交點(diǎn),,點(diǎn),分別在和上,且.
(Ⅰ)求證:∥平面;
(Ⅱ)若,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
如圖,在四棱柱中,底面是正方形,側(cè)棱與底面垂直,點(diǎn)是正方形對(duì)角線的交點(diǎn),,點(diǎn),分別在和上,且.
(Ⅰ)求證:∥平面;
(Ⅱ)若,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com