解:(I)
,∴a
1=1,
n≥2時(shí),a
n=S
n-S
n-1=
,
∴a
n2-a
n-12-a
n-a
n-1=0,
(a
n+a
n-1)(a
n-a
n-1-1)=0,
∴a
n-a
n-1=1.
∴數(shù)列{a
n}是首項(xiàng)為1,公差為1的等差數(shù)列,
∴a
n=n.
于是b
n+1=b
n+3
n,∴b
n+1-b
n=3
n,b
n=b
1+(b
2-b
1)+(b
3-b
2)+…+(b
n-b
n-1)
=
.
(II)
,
∴
,
,
∴
=
=
,
,
∴
=
=
.
分析:(I)由題設(shè)知a
1=1,a
n=S
n-S
n-1=
,a
n2-a
n-12-a
n-a
n-1=0,故(a
n+a
n-1)(a
n-a
n-1-1)=0,由此能導(dǎo)出a
n=n.于是b
n+1=b
n+3
n,b
n+1-b
n=3
n,由此能求出b
n.
(II)
,
,由錯(cuò)位相減法能求出
,由此能得到
=
=
.
點(diǎn)評(píng):第(I)題考查數(shù)列通項(xiàng)公式的求法,解題時(shí)要注意迭代法的合理運(yùn)用;第(II)題考查前n項(xiàng)和的計(jì)算和極限在數(shù)列中的運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意數(shù)列性質(zhì)的合理運(yùn)用.