已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是x+y=0,邊AC上的高BE所在直線的方程是x+3y+4=0.
(1)求點B、C的坐標;   
(2)求△ABC的外接圓的方程.
分析:(1)根據(jù)BE所在的直線與AC垂直得到斜率乘積為-1,BE所在直線的斜率為-
1
3
,求出直線AC的斜率,然后寫出直線AC的方程,把直線AB與CD所在的直線方程聯(lián)立即可求出點C的坐標,設(shè)出B的坐標,代入直線BE,再根據(jù)A與B的坐標表示出中點D的坐標.代入直線CD,兩者聯(lián)立即可求出B的坐標;
(2)設(shè)出圓的一般式方程,把A、B、C三點坐標代入即可求出圓的方程.
解答:解:(1)由題意得直線BE的斜率為-
1
3
,根據(jù)垂直得到直線AC的斜率為3,則直線AC:y-2=3(x-2)
聯(lián)立
x+y=0
y-2=3(x-2)
x=1
y=-1
,所以C(1,-1)
設(shè)B(a,b),代入BE:x+3y+4=0,則AB中點D(
a+2
2
,
b+2
2
)
代入直線x+y=0,
a+3b+4=0
a+2
2
+
b+2
2
=0
解得
a=-4
b=0

所以B(-4,0);

(2)設(shè)圓方程為x2+y2+Dx+Ey+F=0,
A,B,C三點代入得:
4+4+2D+2E+F=0
16-4D+F=0
1+1+D-E+F=0
,
解得
D=
9
4
E=-
11
4
F=-7

所以圓方程為x2+y2+
9
4
x-
11
4
y-7=0
點評:考查學生會求兩條直線的交點坐標,會利用待定系數(shù)法求圓的一般式方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是.(1)求點B、C的坐標;   (2)求△ABC的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是x+y=0,邊AC上的高BE所在直線的方程是x+3y+4=0.
(1)求點B、C的坐標;  (2)求△ABC的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是x+y=0,邊AC上的高BE所在直線的方程是x+3y+4=0.
(1)求點B、C的坐標;   (2)求△ABC的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:0110 期中題 題型:解答題

已知:△ABC中,頂點A(2,2),邊AB上的中線CD所在直線的方程是x+y=0,邊AC上的高BE所在直線的方程是x+3y+4=0。
(1)求點B、C的坐標;
(2)求△ABC的外接圓的方程。

查看答案和解析>>

同步練習冊答案