設(shè)數(shù)列{an}的前n項和為Sn,且(3-m)Sn+2man=m+3(其中m為常數(shù),n∈N*),且m≠-3.
(1)求證:{an}為等比數(shù)列;
(2)若數(shù)列{an}的公比q=f(m),數(shù)列{bn}滿足b1=a1,bn=f(bn-1)(n∈N*,n≥2),求證:{}為等差數(shù)列.
證明:(1)由(3-m)Sn+2man=m+3得 (3-m)Sn+1+2man+1=m+3, ∴(3+m)an+1=2man(m≠-3). ∴.∴{an}為等比數(shù)列. (2)由已知q=f(m)=,b1=a1=1, ∴當(dāng)n≥2時,bn=f(bn-1)=. ∴bnbn-1+3bn=3bn-1.∴. ∴{}是首項為1,公差為的等差數(shù)列. 思路分析:本題要證數(shù)列為等差、等比數(shù)列,所以需按定義研究an+1與an的關(guān)系,而已知為Sn,需將Sn化為an,它們之間的關(guān)系為an= |
證明數(shù)列為等差、等比數(shù)列需緊扣定義,找到an+1與an之間的關(guān)系,由已知前n項和Sn,求出an=由已知條件逐步變形得到,從而得證. |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
1 |
2 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
10 |
9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
Sn |
5•2n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com