某幾何體是由直三棱柱與圓錐的組合體,其直觀圖和三視圖如圖所示,正視圖為正方形,其中俯視圖中橢圓的離心率為( 。
A、
2
B、
1
2
C、
2
2
D、
2
4
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程,空間位置關(guān)系與距離
分析:根據(jù)三視圖的性質(zhì)得到俯視圖中橢圓的短軸長和長周長,再根據(jù)橢圓的性質(zhì)a2-b2=c2,和離心率公式e=
c
a
,計算即可.
解答:解:設(shè)正視圖正方形的邊長為m,根據(jù)正視圖與俯視圖的長相等,得到俯視圖中橢圓的短軸長2b=m,
俯視圖的寬就是圓錐底面圓的直徑
2
m,得到俯視圖中橢圓的長軸長2a=
2
m,
則橢圓的焦距c=
a2-b2
=
1
2
m,
根據(jù)離心率公式得,e=
c
a
=
2
2

故選:C.
點評:本題主要考查了橢圓的離心率公式,以及三視圖的問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1+a2=1,a4+a5=-8,則公比q=( 。
A、-2
B、2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的假命題是( 。
A、?x∈R,2-x+1>1
B、?x∈[1,2],x2-1≥0
C、?x∈R,sinx+cosx=
3
2
D、?x∈R,x2+
1
x2+1
≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:ax+3y-1=0,l2:x+by+1=0,則
a
b
=-3是l1⊥l2( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,2),
b
=(3,y),則“x=1,y=-6”是“
a
b
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:
x2
4
+
y2
3
=1的左,右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|=( 。
A、
10
3
B、3
C、
8
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過拋物線C的焦點F作直線l與拋物線C交于A,B兩點,如果A,B在拋物線C的準(zhǔn)線上的射影分別為A1、B1,那么∠A1FB1為( 。
A、
π
6
B、
π
4
C、
π
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列函數(shù):
①f(x)=x 
1
2
;
②f(x)=2x;
③f(x)=log2x;
④f(x)=sinx.
則滿足關(guān)系式f′(
1
2
)>f(
3
2
)-f(
1
2
)>f′(
3
2
)的函數(shù)的序號是( 。
A、①③B、②④
C、①③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i為虛數(shù)單位,(
1-i
1+i
2=( 。
A、1B、-1C、iD、-i

查看答案和解析>>

同步練習(xí)冊答案