π
0
(x2+sinx)dx
=
π3
3
+2
π3
3
+2
分析:由于F(x)=
1
3
x3-cosx為f(x)=x2+sinx的一個(gè)原函數(shù)即F′(x)=f(x),根據(jù)∫abf(x)dx=F(x)|ab公式即可求出值.
解答:解:∵(
1
3
x3-cosx)′=x2+sinx,
0
π
(x2+sinx)dx

=(
1
3
x3-cosx) |
 
π
0

=
π3
3
+1-(0-1)
=
π3
3
+2.
故答案為:
π3
3
+2.
點(diǎn)評(píng):此題考查學(xué)生掌握函數(shù)的求導(dǎo)法則,會(huì)求函數(shù)的定積分運(yùn)算,是一道基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos(-
x
2
)+sin(π-
x
2
),x∈R

(1)求f(x)的最小正周期有最大值;
(2)求f(x)在[0,π)上的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2
ωx
2
+sinωx-1(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,且在△ABC中AB=AC=
6

(1)化簡(jiǎn)該函數(shù)表示式,并求出該函數(shù)的值域;
(2)求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)在定義域D內(nèi)某區(qū)間I上是增函數(shù),而F(x)=
f(x)
x
在I上是減函數(shù),則稱y=f(x)在I上是“弱增函數(shù)”
(1)請(qǐng)分別判斷f(x)=x+4,g(x)=x2+4x+2在x∈(1,2)是否是“弱增函數(shù)”,并簡(jiǎn)要說(shuō)明理由.
(2)若函數(shù)h(x)=x2+(sinθ-
1
2
)x+b
(θ、b是常數(shù))在(0,1]上是“弱增函數(shù)”,請(qǐng)求出θ及正數(shù)b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=2sin(
π
2
-
x
2
)sin(π+
x
2
)+cos2(
π
2
-
x
2
)-cos2(π+
x
2
)

(1)若x∈(0,
π
2
)
,求f(x)的最小值;
(2)設(shè)g (x)=f(2x-
π
4
)+2m,x∈[
π
4
8
]
,若g (x)有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知|BC|=4,BC的中點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)是(-2,0),AB⊥AC,
(1)求動(dòng)點(diǎn)A的軌跡方程;
(2)若直線l:mx-y+2m-2=0與點(diǎn)A的軌跡恰有一個(gè)公共點(diǎn),求m的值;
(3)若(2)中m的值是函數(shù) f(x)=x2+sinα•x+n的零點(diǎn),求tan(
2
-α)
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案