f(x)是定義在{x|x∈R,x≠0}的奇函數(shù),又f(x)在區(qū)間(0,+∞)上是增函數(shù),且f(-1)=0,則滿足f(x)>0的x的取值范圍是


  1. A.
    (1,+∞)
  2. B.
    (0,1)
  3. C.
    (-1,0)∪(1,+∞)
  4. D.
    (-∞,-1)∪(1,+∞)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:013

f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示,令g(x)=af(x)+b,則下列關于函數(shù)g(x)的敘述正確的是:

[  ]

A.若a<0,則函數(shù)g(x)的圖象關于原點對稱.

B.若a=-1,-2<b<0,則方程g(x)=0有大于2的實根.

C.若a≠0,b=2,則方程g(x)=0有兩個實根.

D.若a≥1,b<2,則方程g(x)有三個實根.

查看答案和解析>>

科目:高中數(shù)學 來源:湖北省荊州中學2011-2012學年高一上學期期中考試數(shù)學(A)試題(人教版) 題型:044

設函數(shù)y=f(x)是定義在R+上的函數(shù),并且滿足下面三個條件:(1)對任意正數(shù)x、y都有f(xy)=f(x)+f(y);(2)當x>1時,f(x)<0;(3)f(3)=-1

(Ⅰ)求f(1)和f()的值;

(Ⅱ)如果不等式f(x)+f(2-x)<2成立,求x的取值范圍.

(Ⅲ)如果存在正數(shù)k使不等式f(kx)+f(2-x)<2有解,求正數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省溫州中學2011-2012學年高二下學期期末考試數(shù)學理科試題 題型:013

已知y=f(x)是定義在R上的函數(shù),a∈R,那么“對任意的x∈R,|f(x)|≥a恒成立”的充要條件是

[  ]

A.對任意的x∈R,f(x)≥a或f(x)≤-a恒成立

B.對任意的x∈R,f(x)≥a恒成立或?qū)θ我獾膞∈R,f(x)≤-a恒成立

C.對任意的x∈R,f(x)≥|a|或f(x)≤-|a|恒成立

D.對任意的x∈R,f(x)≥a恒成立且對任意的x∈R,f(x)≥-a恒成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若m、n∈[-1,1],m+n≠0,>0.

(1)證明f(x)在[-1,1]上是增函數(shù);

(2)解不等式f(x+)<f().

查看答案和解析>>

科目:高中數(shù)學 來源:0103 期中題 題型:填空題

下列說法:
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當x∈[0,+∞)時,f(x)=x(1+x),則當x∈R時,f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù);
其中所有正確說法的序號是(    )。

查看答案和解析>>

同步練習冊答案