16.已知定義在R上的函數(shù)f(x)滿足:①f(x)+f(2-x)=0;②f(x-2)=f(-x),③在[-1,1]上表達(dá)式為f(x)=$\sqrt{1-{x}^{2}}$,則函數(shù)f(x)與函數(shù)g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-x,x>0}\end{array}\right.$的圖象在區(qū)間[-3,3]上的交點個數(shù)為( 。
A.5B.6C.7D.8

分析 由f(x)+f(2-x)=0,可得函數(shù)f(x)的圖象關(guān)于點M(1,0)對稱.由f(x-2)=f(-x),可得函數(shù)
f(x)的圖象關(guān)于直線x=-1對稱.畫出f(x)在[-1,1]上的圖象:進而得到在區(qū)間[-3,3]上的圖象.畫出函數(shù)g(x)在區(qū)間[-3,3]上的圖象,即可得出交點個數(shù).

解答 解:由f(x)+f(2-x)=0,可得函數(shù)f(x)的圖象關(guān)于點M(1,0)對稱.
由f(x-2)=f(-x),可得函數(shù)f(x)的圖象關(guān)于直線x=-1對稱.
又在[-1,1]上表達(dá)式為f(x)=$\sqrt{1-{x}^{2}}$,可得圖象:進而得到在區(qū)間[-3,3]上的圖象.
畫出函數(shù)g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-x,x>0}\end{array}\right.$在區(qū)間[-3,3]上的圖象,
其交點個數(shù)為6個.
故選:B.

點評 本題考查了函數(shù)的圖象與性質(zhì)、數(shù)形結(jié)合思想方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,已知$AB=\sqrt{3}$,$C=\frac{π}{3}$,則$\overrightarrow{CA}•\overrightarrow{CB}$的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知一個幾何體的三視圖如圖所示,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積為24+6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cos(x-$\frac{π}{4}$)-sin(x-$\frac{π}{4}$).
(Ⅰ)判斷函數(shù)f(x)的奇偶性,并給出證明;
(Ⅱ)若θ為第一象限角,且f(θ+$\frac{π}{3}$)=$\frac{\sqrt{2}}{3}$,求cos(2θ+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在長方體ABCD-A1B1C1D1中,AB=BC=$\sqrt{3}$,AA1=1,則異面直線AD與BC1所成角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U={1,2,3,4,5,6},集合A={1,2,4},集合B={3,6},則∁U(A∪B)=(  )
A.{1,2,4}B.{1,2,4,5}C.{2,4}D.{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知偶函數(shù)f(x)在[0,+∞)上是增函數(shù),且f(1)=0,則滿足f(log${\;}_{\frac{1}{2}}$x)>0的x的取值范圍是(  )
A.(0,+∞)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{2}$)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{x-1}$,x∈[2,6].
(1)證明f(x)是減函數(shù);
(2)若函數(shù)g(x)=f(x)+sinα的最大值為0,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)={x^3}+\frac{5}{2}{x^2}+ax+b({a,b∈R})$,函數(shù)f(x)的圖象記為曲線C.
(1)若函數(shù)f(x)在x=-1時取得極大值2,求a,b的值;
(2)若函數(shù)$F(x)=2f(x)-\frac{5}{2}{x^2}-({2a-1})x-3b$存在三個不同的零點,求實數(shù)b的取值范圍;
(3)設(shè)動點A(x0,f(x0))處的切線l1與曲線 C交于另一點B,點B處的切線為l2,兩切線的斜率分別為k1,k2,當(dāng)a為何值時存在常數(shù)λ使得k2=λk1?并求出λ的值.

查看答案和解析>>

同步練習(xí)冊答案