某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績共分五組,得到頻率分布表如下表所示。
組號
分組
頻數(shù)
頻率
第一組
[160,165)
5
0.05
第二組
[165,170)
35
0.35
第三組
[170,175)
30
a
第四組
[175,180)
b
0.2
第五組
[180,185)
10
0.1
(Ⅰ)求的值;
(Ⅱ)為了能選出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取12人進入第二輪面試,求第3、4、5組中每組各抽取多少人進入第二輪的面試;考生李翔的筆試成績?yōu)?78分,但不幸沒入選這100人中,那這樣的篩選方法對該生而言公平嗎?為什么?
(Ⅲ)在(2)的前提下,學校決定在12人中隨機抽取3人接受“王教授”的面試,設第4組中被抽取參加“王教授”面試的人數(shù)為,求的分布列和數(shù)學期望.
(Ⅰ),;(Ⅱ)公平;(Ⅲ)

0
1
2
3
P




 

試題分析:(Ⅰ)由頻率分布表中各組頻率之和為1可求;總的頻數(shù)為100可求;(Ⅱ)按照隨機抽樣的原則可知方法公平;(Ⅲ)按照分布列的取值情況求對應的概率即可.
試題解析:(Ⅰ)由題意知,組頻率總和為,故第組頻率為,所以    2分
總的頻數(shù)為,因此第組的頻數(shù)為,即    4分
(Ⅱ)第組共名學生,現(xiàn)抽取人,因此第組抽取的人數(shù)為:人,
組抽取的人數(shù)為:人,第組抽取的人數(shù)為:人     7分
公平:因為從所有的參加自主考試的考生中隨機抽取人,每個人被抽到的概率是相同的     8分
(只寫“公平”二字,不寫理由,不給分)
(Ⅲ)的可能取值為       
      
的分布列為:

0
1
2
3
P




11分
      12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某品牌汽車4店經(jīng)銷三種排量的汽車,其中三種排量的汽車依次有5,4,3款不同車型.某單位計劃購買3輛不同車型的汽車,且購買每款車型等可能.
(1)求該單位購買的3輛汽車均為種排量汽車的概率;
(2)記該單位購買的3輛汽車的排量種數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有A,B兩球隊進行友誼比賽,設A隊在每局比賽中獲勝的概率都是
(Ⅰ)若比賽6局,求A隊至多獲勝4局的概率;
(Ⅱ)若采用“五局三勝”制,求比賽局數(shù)ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校50名學生參加智力答題活動,每人回答3個問題,答對題目個數(shù)及對應人數(shù)統(tǒng)計結(jié)果見下表:
答對題目個數(shù)
0
1
2
3
人數(shù)
5
10
20
15
根據(jù)上表信息解答以下問題:
(Ⅰ)從50名學生中任選兩人,求兩人答對題目個數(shù)之和為4或5的概率;
(Ⅱ)從50名學生中任選兩人,用X表示這兩名學生答對題目個數(shù)之差的絕對值,求隨機變量X的分布列及數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某射擊小組有甲、乙兩名射手,甲的命中率為P1,乙的命中率為P2,在射擊比賽活動中每人射擊兩發(fā)子彈則完成一次檢測,在一次檢測中,若兩人命中數(shù)相等且都不少于一發(fā),則稱該射擊小組為“先進和諧組”.
(1)若P2,求該小組在一次檢測中榮獲“先進和諧組”的概率;
(2)計劃在2013年每月進行1次檢測,設這12次檢測中該小組獲得“先進和諧組”的次數(shù)為ξ,如果E(ξ)≥5,求P2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某市舉行一次數(shù)學新課程骨干培訓活動,共邀請15名使用不同版本教材的數(shù)學教師,具體情況數(shù)據(jù)如下表所示:
版本
人教A版
人教B版
性別
男教師
女教師
男教師
女教師
人數(shù)
6

4

 
現(xiàn)從這15名教師中隨機選出2名,則2人恰好是教不同版本的女教師的概率是.且.
(1)求實數(shù),的值
(2)培訓活動現(xiàn)隨機選出2名代表發(fā)言,設發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某市直小學為了加強管理,對全校教職工實行新的臨時事假制度:“每位教職工每月在正常的工作時間,臨時有事,可請假至多三次,每次至多一小時”.現(xiàn)對該制度實施以來50名教職工請假的次數(shù)進行調(diào)查統(tǒng)計,結(jié)果如下表所示:
請假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問題:
(1)從該小學任選兩名教職工,用表示這兩人請假次數(shù)之和,記“函數(shù)在區(qū)間上有且只有一個零點”為事件,求事件發(fā)生的概率;
(2)從該小學任選兩名職工,用表示這兩人請假次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在某國際高端經(jīng)濟論壇上,前六位發(fā)言的是與會的含有甲、乙的6名中國經(jīng)濟學專家,他們的發(fā)言順序通過隨機抽簽方式?jīng)Q定.
(Ⅰ)求甲、乙兩位專家恰好排在前兩位出場的概率;
(Ⅱ)發(fā)言中甲、乙兩位專家之間的中國專家數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、隨機變量Y~,且,,則    
A. n="4" p=0.9B.n="9" p="0.4" C.n="18" p=0.2D.N="36" p=0.1

查看答案和解析>>

同步練習冊答案