精英家教網 > 高中數學 > 題目詳情

如圖,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點,將等邊△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(1)求證:平面GNM∥平面ADC′.
(2)求證:C′A⊥平面ABD.

(1)見解析   (2)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,在正三棱柱ABC-A1B1C1中,點D為棱AB的中點,BC=1,AA1=.
(1)求證:BC1∥平面A1CD;
(2)求三棱錐D-A1B1C的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知三棱柱的側棱與底面垂直,且,
,,,點、分別為、的中點.
(1)求證:平面;
(2)求證:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(2011•山東)如圖,在四棱臺ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:AA1⊥BD;
(2)證明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,側面PAD底面ABCD,側棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點.
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求平面PAB與平面PCD所成的二面角.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1的底面是邊長為2的正三角形且側棱垂直于底面,側棱長是,D是AC的中點.
 
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)求直線AB1與平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.

(1)求證DM∥平面APC;
(2)求證平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直三棱柱中,
中點,上一點,且.
(1)當時,求證:平面
(2)若直線與平面所成的角為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點,

(1).求證:D1E⊥A1D;
(2).在線段AB上是否存在點M,使二面角D1-MC-D的大小為?,若存在,求出AM的長,若不存在,說明理由

查看答案和解析>>

同步練習冊答案