已知向量
a
=(1,2),
b
=(2,t).
(1)若
m
n
互相垂直,求t的值;
(2)若
m
n
互相平行,求t的值.
考點:數(shù)量積判斷兩個平面向量的垂直關系,平行向量與共線向量
專題:平面向量及應用
分析:(1)利用
m
n
?
m
n
=0,即可解出;
(2)利用向量共線定理即可得出.
解答: 解:(1)∵
m
n
,∴
m
n
=2+2t=0,解得t=-1.
(2)∵
m
n
,∴t-2×2=0,解得t=4.
點評:本題考查了向量共線定理、向量垂直與數(shù)量積的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的右焦點為F,橢圓C與過原點的直線相交于A、B兩點,連接AF、BF,若|AB|=8,|BF|=4,且cos∠ABF=
1
2
,則橢圓C的離心率是(  )
A、
1
2
B、
3
2
C、
3
3
D、
3
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m、n、l為直線,α、β、γ為平面,下列命題為真命題的是( 。
A、若m∥α,m∥β,則α∥β
B、若m?α,n?β,α⊥β,則m⊥n
C、若l⊥n,l⊥m,m?α,n?α,則l⊥α
D、若α⊥β,α∥γ,則β⊥γ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0),A為橢圓的左頂點,B、C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=30°,則橢圓的離心率等于( 。
A、
2
2
B、
3
3
C、
6
3
D、
2
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形面積為S=
1
2
(a+b+c)r,a,b,c為三角形三邊長,r為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為( 。
A、V=
1
3
abc
B、V=
1
3
Sh
C、V=
1
3
(ab+bc+ac)•h(h為四面體的高)
D、V=
1
3
(S1+S2+S3+S4)•r(其中S1,S2,S3,S4分別為四面體四個面面積,r為四面體內(nèi)切球的半徑)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a∈[1,6],b∈[1,6],曲線C:
|x|
a
+
|y|
b
=1,若x,y∈R,求曲線C所圍成區(qū)域的周長不小于8的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在正三棱柱ABC-A1B1C1中,若AB=2,BB1=
2
,D是A1C1中點.
(1)證明:BC1∥平面AB1D;
(2)求AB1與C1B所成的角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項的和為Sn,且an+Sn=-2n-1(n∈N*).
(1)證明:數(shù)列{an+2}是等比數(shù)列;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+nan(n∈N*),求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x<-2或x>3},B={x|4x+m<0}.當A?B時,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案