如圖,在四棱錐P-ABCD中,底面ABCD是矩形,M、N分別為PA、BC的中點(diǎn),PD⊥平面ABCD,且PD=AD=,CD=1.
(1)證明:MN∥平面PCD;
(2)求二面角A-PB-D的大。
解:(1)證明:取AD中點(diǎn)E,連接ME,NE,由已知M,N分別是PA,BC的中點(diǎn), ∴ME∥PD,NE∥CD 又ME,NE平面MNE,ME∩NE=E, 所以,平面MNE∥平面PCD,所以,MN∥平面PCD.4分 (2)因?yàn)镸E∥PD,所以ME⊥平面ABCD,ME⊥BD,又BD⊥MC,所以BD⊥平面MCE,所以CE⊥BD,又CE⊥PD,所以CE⊥平面PBD,由已知,所以平面PBD的法向量 M為等腰直角三角形PAD斜邊中點(diǎn),所以DM⊥PA, 又CD⊥平面PAD,AB∥CD,所以AB⊥平面PAD,AB⊥DM,所以DM⊥平面PAB,所以平面PAB的法向量(-,0,);設(shè)二面角A-PB-D的平面角為,
|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com