已知函數(shù)f(x)=x3+x.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并說明理由;
(3)判斷函數(shù)f(x)的單調(diào)性,并說明理由.
【答案】分析:(1)根據(jù)多項式函數(shù)的定義域的判定,可知函數(shù)f(x)的定義域為R;
(2)根據(jù)奇偶性的定義,判斷f(-x)與f(x)之間的關(guān)系,即可判斷函數(shù)f(x)的奇偶性;
(3)利用原始的定義進行證明,在(-∞,+∞)上任取x1,x2且x1<x2,只要證f(x2)>f(x1)就可以可,把x1和x2分別代入函數(shù)f (x)=-x3+x進行證明.
解答:解:(1)顯然函數(shù)f(x)的定義域為R;(2分)
(2)函數(shù)f(x)為奇函數(shù).(3分)
因為f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)=-f(x),(6分)
所以f(x)為奇函數(shù).(7分)
(3)函數(shù)f(x)在R上是增函數(shù).(8分)
任取x1,x2∈R,且x1<x2,
則f(x1)-f(x2)=(x13+x1)-(x22+x2)=(x1-x2)(x12+x1x2+x22)+(x1-x2)=(10分)
由x1<x2,得x1-x2<0,,(11分)
于是f(x1)-f(x2)<0,即f(x1)<f(x2).(12分)
所以,函數(shù)f(x)在R上是增函數(shù).
點評:此題主要考查多項式函數(shù)的定義域、奇偶性和單調(diào)性,解題的關(guān)鍵是利用定義進行證明,是一道基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案