設a、b、c∈R+,求證:(a+b+c)

答案:
解析:

  證明:∵a2+b2≥2ab,a、b、c∈R*,

  ∴2(a2+b2)≥(a2+b2)+2ab=(a+b)2,

  ∴a2+b2 ∴(a+b).

  同理(a+c),

  (b+c),

  ∴有(2a+2b+2c)=(a+b+c).

  即:(a+b+c).


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a,b,c∈R+,且a+b+c=3,則
1
a
+
1
b
+
1
c
的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,c∈R,則“ac2<bc2”是“a<b”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“設a、b、c∈R,若ac2>bc2則a>b”以及它的逆命題、否命題、逆否命題中,真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,c∈R且abc≠0,則由代數(shù)式
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
的值組成的集合為
{-4,0,4}
{-4,0,4}
.(用列舉法表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,c∈R,則“ac=bc”是“a=b”的( 。l件.

查看答案和解析>>

同步練習冊答案